0 引 言
柿 (Diospyros kaki L.) 为柿树科 (Ebenaceae) 柿树属 (Diospyros)多年生落叶果树,在全国各地被广为栽培,且以北方地区栽培居多,主产地在山东、山西、河北等
地[1] 。柿果为柿科植物的成熟果实,霜降至立冬间采摘,经脱涩红熟。《滇南本草图说》中记载柿果作为一种药食两用资源,营养价值很高,享有“果中圣品”之誉,具有多种保健功能[2] ,还具有较高的药用价值[3,4] 。早在南朝,著名医学家陶弘景在《名医别录》认为:“柿果性味甘涩,微寒,无毒。可清热润肺,化痰止咳,主治咳嗽、热渴、吐血和口疮”。明代《本草纲目》中也提及:“柿乃脾肺血分之果也。其味甘而气甲,性涩而能收,故有健脾、涩肠、治嗽、止血之功”。归纳起来,中医认为柿果性味甘、寒,涩,无毒,具有润肺化痰、清热生津等功效。现代研究发现柿果果实中富含与抗氧化活性有关的成分,如总酚、总黄酮等,其中总酚含量占1.2%,总类黄酮占1.09%[5] 。现代医学研究发现,柿果有清热滑肠、降压止血等作用,临床对高血压、痔疮出血、有便秘倾向者效果较好[6] ;此外,柿果还可促进血液中乙醇的氧化,有解酒毒之功效;柿果浸出液穴位注射可治疗慢性气管炎,总有效率可以达到96.7%[6] 。以色列科学家研究表明,柿果多酚可通过调节机体脂代谢减轻高脂血症,预防动脉粥样硬化[7] 。由于柿果的功效众多,但是其关键功效不清楚,药用价值定位不准,导致其临床实践应用不明确。故明确柿果的药理功能定位和作用机制显得更加重要。网络药理学是在系统生物学与计算机技术高速发展的基础上发展起来的,在基于“成分-疾病-靶点-通路”相互作用网络的基础上,通过网络比较分析,系统观察药物对靶点和疾病网络的干预与影响,揭示多分子药物协同作用于人体的机制从而挖掘新的药理机
制[8,9] 。这与中医学从整体的角度去诊治疾病的理论,中药的多成分,多途径,多靶点协同作用的原理具有相似之处,为中医现代化提供新的思路[10] 。目前网络药理学已被广泛地用于中药作用机制研究。任莹璐等[11] 采用网络药理学的方法构建了芪参颗粒治疗心血管疾病的“成分-靶点调控网络”,阐明了其作用机制。郑春松等[12] 从网络药理学角度揭示了白芍活性分子群可作用于MAPK、JNK、P13K-AKT信号通路,发挥抑制炎症和骨破坏作用,从而达到治疗类风湿关节炎的药效。本研究将基于网络药理学的研究思路与方法,构建柿果“化合物-靶点-疾病”网络,预测柿果的药理功能定位及作用机制,为柿果今后的药理功能研究与应用提供科学依据。1 方法及数据来源
1.1 柿果化合物的收集
本研究通过国内外文献检索,如通过中文期刊数据库SinoMed (http://www.sinomed.ac.cn)、中国知网、万方、美国国家医学图书馆提供的PubMed (http://pubmed.com.cutestat.com)和TCMSP (http://lsp.nwu.edu.cn/tcmsp.php)等数据库,收集柿果中分离得到的化合物。再利用Pubchem (https://pubchem.ncbi.nlm.nih.gov)、Chemical Book(http://www.chemicalbook.com)和ADMETlab (http://admet.scbdd.com)等数据库平台对其分子结构进行确证,最后采用ChemBioDraw 13.0软件绘制分子结构,优化化学结构后统一保存为“sdf”格式文件。
1.2 柿果化合物潜在靶点预测
通过Swiss target prediction (http://www.swiss targetprediction.ch/)数据库对化合物进行潜在靶点预测,同时筛选物种为“人”的对应潜在靶点。
1.3 柿果化合物-靶点网络构建与分析
采用Cytoscape 3.6.1软件,将化合物与靶点对应关系的ExceL数据构建“化合物-靶点”网络,进一步以Network analysis插件对网络特征指标度(degree)和介数(Betweenness)进行分析。
1.4 柿果靶点-疾病名称-疾病分类构建与分析
在获得上述潜在靶点的基础上,将靶点蛋白导入CTD数据库(https://ctdbase.org/tools/batchQuery.go)中进行相互关联疾病的分析,查询靶点关联的疾病,并采用OMIM数据库对其进行分类和归纳,最后采用Cytoscape 3.6.1软件,构建“靶点-疾病名称-疾病分类”网络,筛选柿果作用的主要疾病。
1.5 柿果作用靶点蛋白PPI网络构建与分析
将Swiss target prediction平台筛选得到的靶点蛋白合并后去冗余,将这些靶点导入STRING (https://string-db.org)数据库中,获取靶点之间的相互作用数据,然后导入Cytoscape 3.6.1软件,构建柿果潜在作用靶点的蛋白相互作用(PPI)网络图,利用Analyze network工具对网络进行分析,采用Generate style from statistics工具根据degree值的大小对靶点的大小和颜色进行设置,完善PPI网络图。
1.6 柿果靶点蛋白的KEGG通路富集分析
为进一步分析潜在作用靶点参与的主要信号通路,本研究采用DAVID(https://david.ncifcrf.gov)对柿果作用的靶点进行KEGG (Kyoto Encyclopedia of Genes and Genomes)通路富集分析,设定阈值P值<0.05,获取靶点参与的主要信号通路,并使用Omicshare(http://www.omicshare.com/tools/Home/Index/index.html)在线分析平台对富集分析结果进行可视化,解析柿果作用的生物通路,探讨柿果治疗疾病的可能机制。
2 结 果
2.1 柿果化合物的收集
本研究通过国内外文献检索及各种数据库等共获得与柿果相关的化合物有16个(表1),其结构式如图1所示。
图1 柿果中16个化合物的结构图
Fig. 1 Structural diagram of 16 compounds in persimmon fruits
注:C1:紫云英苷;C2:咖啡酸;C3:绿原酸;C4:黄姜素;C5:表儿茶素;C6:没食子儿茶素;C7:表没食子酸;C8:没食子酸;C9:异槲皮苷;C10:番茄红素;C11:槲皮素-3-o-β-D-吡喃葡萄糖基-(1-6)-β-D-吡喃葡萄糖;C12:环酸;C13:三叶豆苷;C14:β-胡萝卜素;C15:letutin;C16:黄原黄素
NOTE: C1:astragalin;C2:caffeic acid;C3:chlorogenic acid;C4:chrysontemin;C5:epicatechin;C6:epigallocatechin;C7:epigallcatechine;C8:gallic acid;C9:isoquercitrin;C10:lycopene;C11:quercetin-3-o-β-D-glucopyranosyl-(1-6)-β-D-glucopyranosid;C12:rotungenic acid;C13:trifolin;C14:β-carotene;C15:letutin;C16:xeaxanthin
表1 柿果中化合物信息
Table 1 Information on compounds in persimmon fruits
编号 化合物名称 degree值 编号 化合物名称 degree值 C1 紫云英苷(astragalin) 13 C9 异槲皮苷(isoquercitrin) 13 C2 咖啡酸(caffeic acid) 10 C10 番茄红素(lycopene) 13 C3 绿原酸(chlorogenic acid) 12 C11 槲皮素⁃3⁃o⁃β⁃D⁃吡喃葡萄糖基⁃(1⁃6)⁃
β⁃D⁃吡喃葡萄糖(quercetin⁃3⁃o⁃β⁃D⁃glucopyranosyl⁃(1⁃6)⁃β⁃D⁃glucopyranosid)
10 C4 黄姜素(chrysontemin) 11 C12 环酸(rotungenic acid) 10 C5 表儿茶素(epicatechin) 9 C13 三叶豆苷(trifolin) 14 C6 没食子儿茶素(epigallocatechin) 9 C14 β⁃胡萝卜素(β⁃carotene) 14 C7 表没食子酸(epigallcatechine) 9 C15 letutin 11 C8 没食子酸(gallic acid) 10 C16 黄原黄素(xeaxanthin) 15 注:degree值代表其作用强度
NOTE: degree value represents its intensity of action
2.2 柿果化合物-靶点网络构建与分析
如图2所示,柿叶治疗疾病的“化合物-靶点”网络共有84个节点,包含了16个化合物,68个靶点,degree值越大,化合物节点越多。它们由183条边相连构成一个完整的网络,每条边代表化合物和靶点中的相互作用,平均节点度为2.7,其中degree值排名靠前的化合物有黄原黄素(degree=15)、三叶豆苷 (degree=14)、β-胡萝卜素(degree=14)、紫云英苷 (degree=13) 异槲皮苷 (degree=13)、番茄红素 (degree=13)。
2.3 柿果靶点-疾病种类-疾病分类构建与分析
将靶点蛋白导入CTD数据库中进行相关疾病的分析,查询靶点关联的疾病,删除重复项后,列取前30种疾病名称及疾病分类,如表2所示。再采用Cytoscape 3.6.1软件,构建“靶点-疾病名称-疾病分类”网络,如图3所示。前30种疾病主要分布于神经系统疾病,心血管系统疾病等。其中神经系统疾病有阿尔茨海默病(AD)、苯丙胺相关疾病、学习障碍、记忆障碍、运动障碍、癫痫发作、震颤、惊恐障碍、肌阵挛性癫痫、智力障碍;心血管系统疾病有心肌梗塞、心脏肥大、心脏病、高血压、低血压等。
表2 柿果潜在作用靶点名称及疾病分类
Table 2 Names of potential targets for persimmon fruits and classification of diseases
疾病名称 疾病分类 疾病ID 阿尔茨海默病 精神障碍、神经系统疾病 MESH:D000544 苯丙胺相关疾病 精神障碍、物质相关障碍 MESH:D019969 淀粉样变性 代谢性疾病 MESH:D000686 乳腺肿瘤 癌症、皮肤病 MESH:D001943 肾癌 癌症、泌尿生殖系统疾病(女性)、泌尿生殖系统疾病(男性) MESH:D002292 生长障碍 病理学(过程) MESH:D006130 学习障碍 精神障碍、神经系统疾病、体征和症状 MESH:D007859 肝硬化 消化系统疾病 MESH:D008106 记忆障碍 神经系统疾病、体征和症状 MESH:D008569 运动障碍 神经系统疾病 MESH:D009069 肌营养不良 遗传病(先天)、肌肉骨骼疾病、神经系统疾病 MESH:D009136 神经系统疾病 神经系统疾病 MESH:D009422 肥胖 营养障碍、体征和症状 MESH:D009765 产前损伤 妊娠并发症 MESH:D049188 前列腺肿瘤 癌症、泌尿生殖系统疾病(男性) MESH:D011471 癫痫发作 神经系统疾病、体征和症状 MESH:D012640 震颤 神经系统疾病、体征和症状 MESH:D014202 贫血 病理学(过程) MESH:D007511 实验性肝硬化 消化系统疾病 MESH:D008106 心肌梗塞 心血管疾病 MESH:D009203 心脏肥大 心血管疾病、病理学 MESH:D006332 癫痫 神经系统疾病 MESH:D004827 纤维化 病理学 MESH:D005355 心脏病 心血管疾病 MESH:D006331 高血压 心血管疾病 MESH:D006973 低血压 心血管疾病 MESH:D007022 惊恐障碍 精神障碍 MESH:D016584 发绀 体征和症状 MESH:D003490 肌阵挛性癫痫 神经系统疾病 MESH:C564313 智力障碍 精神障碍、神经系统疾病、体征和症状 MESH:D008607 2.4 柿果作用靶点蛋白相互作用网络构建与分析
对柿果化合物的潜在作用靶点进行合并去冗余后,总共得到68个靶点蛋白,将其导入STRING数据库中,限定物种为人源,获取这68个靶点的相互作用关系,随后将结果导入Cytoscape 3.6.1软件构建PPI网络图,如图4所示。共包括84个节点,226条边,每一个节点表示一个靶点蛋白,节点越大、颜色由红变蓝对应其度值越大;边表示蛋白之间的关联。根据网络拓扑学性质,其中degree值排前10的关键蛋白分别为ESR1、PGS2、MMP2、TIMP1、MMP9、MMP1、AR、SLC6A3、PRKCB、CYP19A1,表明这些靶点蛋白在PPI网络图中的中心度较高,能与多个蛋白发生相互作用,因而是柿果作用的重要靶点。
2.5 柿果靶点蛋白的KEGG通路富集分析
采用DAVID在线分析平台对柿叶作用的68个靶点进行KEGG通路富集分析,结果如图5所示。以Rich factor、P值以及调控通路上的基因个数来衡量KEGG富集程度,其中Rich factor指差异表达的基因中位于该通路条目的基因数目与所有注释基因中位于该通路条目的目的基因总数的比值,且Rich factor越大,富集的程度越大。研究结果发现,靶点主要富集于氮素代谢、血清素能突触以及TRP通道炎症介质的调节这三条信号通路。
3 讨 论
柿果的药用价值从古沿用至今,但柿果在临床的定位并不明确。因此,深入探索柿果的主要药理功能和作用机制则尤为重要。随着“网络药理学”概念的提出,将其与中药研究结合是目前的研究热点之
一[13] ,基于多种数据平台整合化学成分、疾病靶点已有的研究成果,系统地对其所含成分的作用靶点、信号通路及协同作用进行研究,从而明确柿果的主要药理功能和作用机制。本研究采用Swiss target prediction数据库对化合物进行潜在靶点筛选,且Swiss target prediction软件是一个经典的软件,在很多中药网络中有应
用[14] 。本文对化合物-靶点网络进行分析,结果发现柿果一系列degree数较高的化合物包括2个萜类,分别为黄原黄素(degree=15)、β-胡萝卜素(degree=14),黄酮类有3个,包括三叶豆苷 (degree=14)、紫云英苷 (degree=13)、异槲皮苷 (degree=13),烯类化合物有1个,为番茄红素 (degree=13)。有研究报道黄原黄素对视网膜有保护作用[15] 。三叶豆苷对杜氏利什曼原虫所引起的寄生虫病有一定的疗效。杜氏利什曼原虫感染BALB/C小鼠后,小鼠出现脾脏肿大、贫血、消瘦等症状,三叶豆苷可改善这些症状[16] 。β-胡萝卜素是一种抗氧化剂,膳食摄入可以降低阿尔茨海默病的发病风险[17] 。紫云英苷具有抗炎作用,研究表明,紫云英苷可通过调节钩端螺旋体感染小鼠子宫和子宫内膜上皮细胞的核转录因子NF-κB和丝裂原活化蛋白激酶信号通路,抑制炎症反应,从而防止组织损伤[18] 。异槲皮苷是强大的抗氧化剂,有研究将异槲皮苷预处理后作用于6-羟基多巴胺诱导的大鼠嗜铬细胞瘤细胞中,结果发现对其具有保护作用,且发现异槲皮苷参与泛素途径和多巴胺生物合成的基因编码转录物表达水平的变化,这些也许与帕金森病有关[19] 。流行病学研究报道,番茄红素可以改善血管功能,有助于心血管疾病一级和二级的预防[20] ,且还能预防前列腺或胃肠道癌症[21] 。从上述degree值较高的化合物中可以看出其在治疗心血管疾病、癌症、神经系统性疾病、炎症等方面具有优势。本研究基于网络药理学的方法对柿果的潜在作用靶点进行挖掘,并根据潜在作用靶点预测柿果的药理学作用机制及其可治疗的主要疾病类型。分析结果表明,柿果中16个化合物可与68个潜在靶点发生互作;PPI网络图展示了所有靶点蛋白的相互作用关系,总共包括84个节点,226条边,可发现靶点间的关联关系,进而通过网络分析获得重要靶点,如本研究通过网络分析发现,中心度较高的靶点有10个,分别为ESR1、PGS2、MMP2、TIMP1、MMP9、MMP1、AR、SLC6A3、PRKCB、CYP19A1等。临床研究发现,ESR1基因突变对乳腺癌进展及内分泌治疗耐药的产生可能发挥重要作
用[22] 。临床研究发现,早期1型糖尿病高危受试者中存在高水平的单核细胞PGS2表达[23] 。研究发现用东莨菪碱来诱导失忆症动物模型出现了海马组织MMP2和MMP9下降,提示MMP2和MMP9在AD记忆中的积极作用[24] 。此外MMP9的高表达与TIMP1的低表达与喉鳞癌的发生、发展有关,可用于判断预后及评估淋巴结转移风险[25,26] 。有学者评估了215例浸润性导管乳腺癌患者的雄激素受体(AR)状态,发现在80%~90%乳腺肿瘤患者细胞中可检测到AR高表达。电泳迁移率变化分析显示,AR与雌激素反应元件(ERE)结合,激活止靶基因,介导17β-雌二醇对乳腺癌细胞的刺激作用[27] 。SLC6A3是帕金森病的候选基因,其在多巴胺能神经传递中起着关键作用[28] 。有研究采用RT-PCR分析了系统性红斑狼疮患者基因表达水平,发现PRKCB mRNA水平显著升高,且进一步研究发现PRKCB的单核苷酸多态性(SNP)rs16972959与SLE的血管炎具有显著相关性[29] 。有研究对5 528名骨关节炎(OA)患者和2 381名对照者的CYP19A1单核苷酸多态性进行了基因分型,结果发现CYP19A1(rs1062033基因型)单核苷酸多态性与OA风险相关[30] 。本研究采用在线分析系统DAVID进行KEGG通路富集分析,发现网络中的核心靶点主要富集于3个通路:氮素代谢、血清素能突触以及TRP通道炎症介质的调节。其中后2条通路与神经系统疾病、心血管系统疾病最为密切。有研究发现血清素能突触是精神分裂症病理生理学中的主要神经调节剂,可通过增加cAMP水平而增强苔藓纤维突触传递,且苔藓纤维突触处的单胺能调节改变或许是精神分裂症患者海马依赖性脑功能损害的一个候选病理生理学基
础[31] 。血清素能突触通常用于治疗抑郁症、焦虑症、强迫症和各种恐慌性恐惧症[32] ,且其与神经退行性疾病和帕金森病等神经系统疾病密切相关[33] 。TRP通道炎症介质的调节是炎症介导通路,很多炎症介质(如补体、细胞因子、活性氧等)都与神经系统疾病和心血管系统疾病有关。有研究发现白细胞介素1β(IL-1β)的产生会导致IL-6和C反应蛋白水平的增加,可能是胆固醇晶体在血管壁内早期沉积与巨噬细胞-单核细胞相互作用之间的机械联系,从而引发脂肪条纹并促进局部动脉粥样硬化的发展[34] 。虽然炎症本身也许不会引起疾病,但它对周围神经系统的疾病(神经性疼痛、纤维肌痛)和中枢神经系统的疾病(如阿尔茨海默病、帕金森病、多发性硬化症、运动神经元病、缺血和创伤性脑损伤、抑郁症和自闭症谱系障碍)发病机制起着重要作用[35] 。综上所述,本研究基于网络药理学对柿果进行药理功能定位及其作用机制研究,在现有的化合物及其作用靶点的研究成果基础上对柿果的化合物进行潜在作用靶点预测,具有较高的准确性,通过化合物-靶点网络构建、靶点-疾病名称-疾病分类网络构建、靶点蛋白相互作用网络构建、KEGG通路富集分析等一系列整合网络,结果均显示柿果具有潜在的治疗神经系统疾病、心血管系统疾病等功效,但仍需进一步的药理学实验验证。本研究揭示了柿果多化合物、多靶点、协同作用的药理特点,为今后进一步的药理功能定位及其作用机制研究与应用奠定了基础。
参考文献
- 1
Cai J, Song H, Xu L, et al. Synthetical development and utilization of the persimmon resource [J]. Food Research and Development, 2005, 26(6): 115-117.
蔡健, 宋华, 徐良,等. 柿子资源开发利用[J]. 食品研究与开发, 2005, 26(6): 115-117.
- 2
Zhang Y K. Dietary and medicinal persimmon [J]. Medicinal Dietary Therapy, 2003(3): 42-43.
张余康. 食药兼优话柿子[J]. 药膳食疗, 2003(3): 42-43.
- 3
Yang Z W. Medical value of persimmon [J]. Oriental Medicinal Diet, 2004(9): 5.
杨泽武. 柿子的药用价值[J]. 东方药膳, 2004(9): 5.
- 4
Chang L, Jiang G G. Medical value of persimmon [J]. Agricultural Knowledge, 2004 (32): 59.
常莉, 姜广国. 柿子的药用价值[J]. 农业知识, 2004(32): 59.
- 5
Yang J T, Li M J, Du G R, et al. Analysis of antioxidant components in persimmon fruits of different genotypes [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2010, 19(7): 138-141.
杨继涛, 李明军, 杜国荣,等. 不同基因型柿果实抗氧化物成分分析[J]. 西北农业学报, 2010, 19(7):138-141.
- 6
Ma L H. Analysis and study on medicinal components of persimmon [J]. Forestry of Shanxi, 2001(5): 29-30.
马兰花. 柿子药用成份分析及研究[J]. 山西林业, 2001(5): 29-30.
- 7
Dong C J. Israel found that persimmon fruit can resist atherosclerosis [J]. Citrus and Subtropical Fruit Tree Information, 2002(2): 16.
董朝菊. 以色列发现柿果能抗动脉硬化[J]. 柑桔与亚热带果树信息, 2002(2): 16.
- 8
Pan J G. New paradigm for drug discovery based on network pharmacology [J]. Chinese Journal of New Drugs & Clinical Remedies, 2009, 28(10): 721-726.
潘家祜. 基于网络药理学的药物研发新模式[J]. 中国新药与临床杂志, 2009, 28(10): 721-726.
- 9
Wang J , Li X J . Drug targets discovery based on dynamic signal transduction networks [J]. Acta Pharmaceutica Sinica, 2010, 45(1): 1-8.
- 10
Liu Z H, Sun X B. Network pharmacology: new opportunities for the modernization of traditional chinese medicine [J]. Journal of Pharmacy, 2012, 47(6): 696-703.
刘志华, 孙晓波. 网络药理学:中医药现代化的新机遇[J]. 药学学报, 2012, 47(6): 696-703.
- 11
Ren Y L, Zeng Z F, Wang T Y, et al. Study on the "component-target regulatory network" of Qishen granules in the treatment of cardiovascular diseases [J]. Traditional Chinese Medicine, 2017, 40(12): 2960-2963.
任莹璐, 曾紫凡, 王腾宇, 等. 芪参颗粒治疗心血管疾病的“成分-靶点调控网络”研究 [J]. 中药材, 2017, 40(12): 2960-2963.
- 12
Zheng C S, Huang S X, Ye H Z , et al. On the role of Baishao in the treatment of rheumatoid arthritis from the viewpoint of network pharmacology [J]. Rheumatism and Arthritis, 2017, 6(5): 11-15, 34.
郑春松, 黄绥心, 叶蕻芝, 等. 从网络药理学角度研究白芍治疗类风湿关节炎的作用 [J]. 风湿病与关节炎, 2017, 6(5): 11-15, 34.
- 13
Zhu D N, Chen C, Wang S M, et al. Application progress of network pharmacology in the research of traditional Chinese medicine [J]. Guangdong Chemical Industry, 2018, 45(7): 157-158.
朱冬宁, 陈驰, 王淑美, 等. 网络药理学在中医药研究领域的应用进展 [J]. 广东化工. 2018, 45(7): 157-158.
- 14
Gfeller D , Grosdidier A, Wirth M, et al. Swiss target prediction: a web server for target prediction of bioactive small molecules [J]. Nucleic Acids Res, 2014, 42(W1):W32-38.
- 15
Jarvus L. Lutein buoys supplements market with eye health applications [J]. Chemical Market Reporter, 2001, 16(7): 3-7.
- 16
Arias A R, Pandolfi E, Vega M C , et al. Selected natural and synthetic phenolic compounds with antileishmanial activity: a five-year review [J]. Curr Bioact Compd, 2013, 8(4): 307-333.
- 17
Li F J , Shen L , Ji H F . Dietary intakes of vitamin E, vitamin C, and β-carotene and risk of Alzheimer's disease: a meta-analysis [J]. J Alzheimers Dis , 2012, 31(2): 253-258.
- 18
Zhang W , Lu X , Wang W , et al. Inhibitory effects of emodin, thymol, and astragalin on leptospira interrogans-induced inflammatory response in the uterine and endometrium epithelial cells of mice [J]. Inflammation, 2017, 40(2): 666-675.
- 19
Magalingam K B, Radhakrishnan A, Ramdas P, et al. Quercetin glycosides induced neuroprotection by changes in the gene expression in a cellular model of Parkinson’s disease [J]. Journal of Molecular Neuroscience, 2015, 55(3): 609-617.
- 20
Mozos I, Stoian D, Caraba A, et al. Lycopene and vascular health [J]. Frontiers in Pharmacology, 2018, 9: 521-537.
- 21
Clinton S K . Lycopene: chemistry, biology, and implications for human health and disease [J]. Nutrition Reviews, 2010, 56(2): 35-51.
- 22
Toy W, Carlson K E, Martin T A, et al. Abstract 999: ESR1 mutations activate and confer hormone resistance via distinct mechanisms [J]. Cancer Res, 2017, 77(13 Supplement): 999.
- 23
Litherland S A, She J X, Schatz D, et al. Aberrant monocyte prostaglandin synthase 2 (PGS2) expression in type 1 diabetes before and after disease onset [J]. Pediatric Diabetes, 2010, 4(1): 10-18.
- 24
Moosavi M , Soukhaklari R , Moezi L, et al. Scopolamine-induced passive avoidance memory retrieval deficit is accompanied with hippocampal MMP2, MMP-9 and MAPKs alteration [J]. Eur J Pharmacol, 2018, 819: 248-253.
- 25
Chen G H, Tong Z P, Zhong C S, et al. Expression and significance of P53, MMP9 and TIMP1 in laryngeal squamous cell carcinoma [J].Journal of Qiqihar Medical College, 2018, 39(5): 497-499.
陈贵红, 童宗培, 钟才水,等. P53、MMP9和TIMP1在喉鳞癌中的表达及意义[J]. 齐齐哈尔医学院学报, 2018, 39(5): 497-499.
- 26
Luczyszyn S M, de Souza C M, Braosi A P, et al. Analysis of the association of an MMP1 promoter polymorphism and transcript levels with chronic periodontitis and end-stage renal disease in a Brazilian population [J]. Arch Oral Biol, 2012, 57(7): 954-963.
- 27
Peters A A, Buchanan G , Ricciardelli C , et al. Androgen receptor inhibits estrogen receptor-alpha activity and is prognostic in breast cancer [J]. Cancer Res, 2009, 69(15): 6131-6140.
- 28
Kelada S N, Checkoway H , Kardia S L, et al. 5 and 3 region variability in the dopamine transporter gene (SLC6A3), pesticide exposure and Parkinson s disease risk: a hypothesis-generating study [J]. Hum Mol Genet, 2006, 15(20): 3055-3062.
- 29
Zhu Z W, Yang L L, Zhang Y H, et al. Increased expression of PRKCB mRNA in peripheral blood mononuclear cells from patients with systemic lupus erythematosus [J]. Ann Hum Genet, 2018, 82(4): 200-205.
- 30
Riancho J A, García-Ibarbia C, Gravani A , et al. Common variations in estrogen-related genes are associated with severe large-joint osteoarthritis: a multicenter genetic and functional study [J]. Osteoarthritis & Cartilage, 2010, 18(7): 927-933.
- 31
Kobayashi K, Umeda-Yano S, Yamamori H, et al. Correlated alterations in serotonergic and dopaminergic modulations at the hippocampal mossy fiber synapse in mice lacking dysbindin [J]. PLoS One, 2011, 6(3):e18113.
- 32
Held J M . Treatment for Parkinson s disease—combination high dose serotonergic synaptic reuptake inhibitor with phosphodiesterase inhibitor: US8841300B2 [P]. 2014-09-23.
- 33
Frechilla D , Cobreros A , Saldise L , et al. Serotonin 5‐HT1A receptor expression is selectively enhanced in the striosomal compartment of chronic parkinsonian monkeys [J]. Synapse, 2015, 39(4): 288-296.
- 34
Ricardo O Escárcega, Lipinski M J , Mario G C. Inflammation and atherosclerosis cardiovascular evaluation in patients with autoimmune diseases [J]. Autoimmun Rev, 2018, 17(7): 703-708.
- 35
Skaper S D , Laura F , Morena Z , et al. An inflammation-centric view of neurological disease: beyond the neuron [J]. Front Cell Neurosci, 2018, 12: 72. □
- 1
摘要
基于网络药理学,通过国内外文献检索获取柿果中的化合物,采用Swiss target prediction数据库对化合物进行潜在靶点垂钓以探讨柿果的药理功能定位及作用机制。以Cytoscape软件构建化合物-靶点网络,靶点-疾病名称-疾病分类网络,同时对靶点进行蛋白相互作用(PPI)网络构建,采用DAVID数据库对靶点进行通路富集分析。本研究共收集到柿果中16个化合物,可作用于68个靶点,这些靶点主要作用于心血管疾病、神经精神性疾病等。PPI网络图包含84个节点,226条边,其中degree值排前10的关键蛋白分别为ERS1、PGS2、MMP2、TIMP1、MMP9、MMP1、AR、SLC6A3、PRKCB、CYP19A1。上述靶点可调节氮素代谢、血清素能突触以及TRP通道炎症介质的调节等信号通路。本研究为阐明柿果的药理功能定位及其作用机制研究提供了可靠的依据。
Abstract
To investigate the pharmacological function localization and action mechanism of persimmon fruit based on network pharmacology, compounds in persimmon fruits were obtained by searching domestic and foreign literatures. The potential targets were predicted by Swiss target prediction database. Species were screened as potential targets for human beings. Compound-target network, target-disease name-disease classification network and PPI network of target protein were constructed by Cytoscape software. Pathway enrichment analysis of target was carried out using DAVID database. A total of 16 compounds were collected from persimmon fruits, which could act on 68 targets. Disease types are mainly related to cardiovascular diseases, neuropsychiatric diseases, and other diseases. Protein-protein interaction network (PPI) network graph contains 84 nodes and 226 edges.The top 10 degree values of proteins are ERS1, PGS2, MMP2, TIMP1, MMP9, MMP1, AR, SLC6A3, PRKCB and CYP19A1. Persimmon fruits may have therapeutic effects on cardiovascular diseases, neuropsychiatric diseases by nitrogen metabolism, serotonergic synapse and inflammatory mediator regulation of TRP channel pathways. This study provides a reliable basis for elucidating the pharmacological function localization and action mechanism of action of persimmon fruits.