en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
NikovicsK, BleinT, PeaucelleA, et al. The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. The Plant Cell, 2006, 18, 2929-2945.
参考文献 2
AidaM, TasakaM. Genetic control of shoot organ boundaries [J]. Curr Opin Plant Biol, 2006, 9(1): 72-77.
参考文献 3
Ž dníkovP, SimonR. How boundaries control plant development [J]. Curr Opin Plant Biol, 2014, 17: 116-125.
参考文献 4
HassonA, PlessisA, BleinT, et al. Evolution and diverse roles of the CUP-SHAPED COTYLEDON genes in Arabidopsis leaf development [J]. Plant Cell, 2011, 23(1): 54-68.
参考文献 5
BrandA, ShirdingN, ShleizerS, et al. Meristem maintenance and compound-leaf patterning utilize common genetic mechanisms in tomato [J]. Planta, 2007, 226(4): 941-951.
参考文献 6
BergerY, Harpaz-SaadS, BrandA, et al. The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves [J]. Development, 2009, 136(5): 823-832.
参考文献 7
BleinT, PulidoA, Vialette-GuiraudA, et al. A conserved molecular framework for compound leaf development [J]. Science, 2008, 322(5909): 1835-1839.
参考文献 8
BuschB L, SchmitzG, RossmannS, et al. Shoot branching and leaf dissection in tomato are regulated by homologous gene modules [J]. Plant Cell, 2011, 23(10): 3595-3609.
参考文献 9
BilsboroughG D, RunionsA, BarkoulasM, et al. Model for the regulation of Arabidopsis thaliana leaf margin development [J]. Proc Natl Acad Sci U S A, 2011, 108(8): 3424-3429.
参考文献 10
Ben-GeraH, ShwartzI, ShaoM R, et al. ENTIRE and GOBLET promote leaflet development in tomato by modulating auxin response [J]. Plant, 2012, 70(6): 903-915.
参考文献 11
PengJ, ChenR. Auxin efflux transporter MtPIN10 regulates compound leaf and flower development in Medicago truncatula [J]. Plant Signal Behav, 2011, 6(10): 1537-1544.
参考文献 12
ZhouC, HanL, HouC Y, et al. Developmental analysis of a Medicago truncatula smooth leaf margin1 mutant reveals context-dependent effects on compound leaf development [J]. Plant Cell, 2011, 23(6): 2106-2124.
参考文献 13
DenglerN G. Comparison of leaf development in normal (+/+), entire (e/e), and lanceolate (La/+) plants of tomato, lycopersicon esculentum ‘ailsa craig’ [J]. Bot Gaz, 1984, 145(1): 66-77.
参考文献 14
AidaM, TasakaM. Genetic control of shoot organ boundaries [J]. Curr Opin Plant Biol, 2006, 9(1): 72-77.
参考文献 15
ClaybergC D, ButlerL, KerrE A, et al. Third list of known genes in the tomato [J]. J Hered, 1966, 57(5): 189-196.
参考文献 16
David-SchwartzR, KoenigD, SinhaN R. LYRATE is a key regulator of leaflet initiation and lamina outgrowth in tomato [J]. Plant Cell, 2009,21(10): 3093-3104.
参考文献 17
BleinT, PautotV, LaufsP. Combinations of mutations sufficient to alter Arabidopsis leaf dissection [J]. Plants (Basel), 2013, 2(2): 230-247.
参考文献 18
VladD, KierzkowskiD, RastM I, et al. Leaf shape evolution through duplication, regulatory diversification, and loss of a homeobox gene [J]. Science, 2014, 343(6172): 780-783.
参考文献 19
SicardA, ThammA, MaronaC, et al. Repeated evolutionary changes of leaf morphology caused by mutations to a homeobox gene [J]. Curr Biol, 2014, 24(16): 1880-1886.
参考文献 20
YifharT, PekkerI, PeledD, et al. Failure of the tomato trans-acting short interfering RNA program to regulate AUXIN RESPONSE FACTOR3 and ARF4 underlies the wiry leaf syndrome [J]. Plant Cell, 2012, 24(9): 3575-3589.
参考文献 21
ZhouC, HanL, FuC X, et al. The trans-acting short interfering RNA3 pathway and no apical meristem antagonistically regulate leaf margin development and lateral organ separation, as revealed by analysis of an argonaute7/lobed leaflet1 mutant in Medicago truncatula [J]. Plant Cell, 2013, 25(12): 4845-4862.
参考文献 22
HellmannH, HobbieL, ChapmanA, et al. Arabidopsis AXR6 encodes CUL1 implicating SCF E3 ligases in auxin regulation of embryogenesis [J].EMBO J, 2003, 22(13): 3314-3325.
参考文献 23
ZhengM D, LiuX Y, LiangS, et al. Chloroplast translation initiation factors regulate leaf variegation and development [J]. Plant Physiol, 2016, 172(2): 1117-1130.
参考文献 24
HobbieL, McGovemM, HurwitzL R, et al. The axr6 mutants of Arabidopsis thaliana define a gene involved in auxin response and early development [J]. Development, 2000, 127(1): 23-32.
参考文献 25
HamannT, BenkovaE, BäurleI, et al. The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning [J]. Genes Dev, 2002, 16(13): 1610-1615.
参考文献 26
DeyholosM K, CordnerG, BeebeD, et al. The SCARFACE gene is required for cotyledon and leaf vein patterning [J]. Development, 2000, 127(15): 3205-3213.
参考文献 27
SieburthL E, MudayG K, KingE J, et al. SCARFACE encodes an ARF-GAP that is required for normal auxin efflux and vein patterning in Arabidopsis [J]. Plant Cell, 2006, 18(6): 1396-1411.
参考文献 28
IwakawaH, UenoY, SemiartiE, et al. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana, required for formation of a symmetric flat leaf lamina, encodes a member of a novel family of proteins characterized by cysteine repeats and a leucine zipper [J]. Plant Cell Physiol, 2002, 43(5): 467-478.
参考文献 29
Chalfun-juniorA, FrankenJ, MesJ J, et al. ASYMMETRIC LEAVES2-LIKE1 gene, a member of the AS2/LOB family, controls proximal-distal patterning in Arabidopsis petals [J]. Plant Mol Biol Rep, 2005, 57(4): 559-575.
参考文献 30
TurnerS, SieburthL E. Vascular patterning [J]. Arabidopsis Book, 2003, 2: e0073.
参考文献 31
ScarpellaE, MarcosD, FrimlJ, et al. Control of leaf vascular patterning by polar auxin transport [J]. Genes Dev, 2006, 20(8): 1015-1027. □
目录 contents

    摘要

    通常可通过植物叶片的形态来区分不同植物的种类。叶片由茎顶端分生组织侧翼发育而成,为多种多样大小和形状的扁平结构。叶片的结构看似简单,但调控叶片形态和结构发育的分子机理错综复杂,叶片的发育受植物激素、转录因子、一系列蛋白因子及环境的共同调控。本文回顾了叶片边缘形态和叶脉发育研究的最新进展。在叶边缘形态方面,Aux/IAA生长素响应抑制家族蛋白通过调节生长素浓度最大点的离散分布影响小叶的起始和生长以及叶边缘结构;NAM/CUC转录因子促进叶边缘锯齿的分离以及复叶中小叶的分离和分化,NAM/CUC和Aux/IAA通过不同通路实现对生长素的调控;拟南芥RAX1基因/番茄Potato-leaf基因和拟南芥JAG基因/番茄LYR基因促进叶边缘锯齿发育;RCO调控复叶小叶的发育不通过改变生长素的分布来实现;在番茄中反式小干扰RNA途径中的因子参与叶边缘形态发育;另外,在拟南芥中,mir164ACUC2PIN1DPA4SVR9-1SVR9L-1构成复杂的调控网络影响叶边缘锯齿的发育。在叶脉发育方面,PIN1能否正确的定位会影响叶脉发育;AS1和AS2共同参与叶片远近轴极性的分化;另外AXR6、MP、BDL、CVP因子功能的缺失影响叶脉发育;生长素、PIN1、Aux/IAA、MP、ATHB8构成反馈循环调控子叶叶脉的形成。

    Abstract

    Leaf morphology is commonly used to distinguish different plant species. Leaves initiate from the lateral of shoot apical meristem to develop into flat structure of various sizes and shapes. The structure of leaf seems simple, but the molecular mechanism of regulating leaf morphology and structural development is complicated. The development of leaf blade is regulated by plant hormones, transcription factors, a series of protein factors and environment conditions. In terms of leaf marginal morphology, Aux/IAA auxin response inhibitor family proteins affect leaf initiation and growth and leaf marginal structure by regulating the discrete distribution of maximum auxin concentration; NAM/CUC transcription factors promote the separation and differentiation of serrated leaf margins and leaflet in compound leaves, NAM/CUC and Aux/IAA regulate auxin through different pathways; Arabidopsis thaliana RAX1 gene/Lycopersicum esculentum Potato-leaf gene and Arabidopsis thaliana JAG gene/Lycopersicum esculentum LYR gene promote leaf serration development; RCO regulates the development of leaflet in compound leaves independent of the distribution of auxin; factors in trans-small interfering RNA pathway participate in leaf marginal development in tomato; in addition, in Arabidopsis thaliana, mir164A, CUC2, PIN1, DPA4, SVR9-1 and SVR9L-1 constitute complex regulatory networks that affect the development of leaf serration. In terms of leaf vein development, correct location of PIN1 affects leaf vein development; AS1 and AS2 participate in the polarity differentiation of leaf in far and near axis; moreover, loss of function of AXR6, MP, BDL, CVP factors affects the development of leaf vein; in addition, auxin, PIN1, Aux/IAA, MP and ATHB8 constitute feedback cycle to regulate cotyledon vein formation.

  • 0 引 言

    0

    叶是绿色植物进行光合作用的主要器官。叶边缘和叶脉的发育分别与植物的生长发育息息相关,叶边缘形态不仅影响植物对高温、严寒、干旱等逆境的适应性,而且影响植物的光合利用率;叶脉是运输光合产物、水分和无机盐的组织,同时起到支持叶片的作用。高等植物叶边缘形态发育和叶脉发育是由错综复杂的分子网络所调控的,涉及众多转录因子、基因、小RNA、激素等。

  • 1 叶片边缘形态

    1

    叶片边缘形态发生在初级和次级形态建成期,包括在叶片边缘形成锯齿、深裂和小叶。叶边缘锯齿结构的形成是由相邻区域的差异性生长导致,这种差异性生长大概是由于局部区域生长的限制或促进导致的。单叶叶边缘形态或复叶的形成涉及一些复合信号通路,同时包括生长素信号转[1,2]

  • 1.1 复叶发育调控的关键因子

    1.1
  • 1.1.1 NAM/CUC转录因子、GOB基因

    1.1.1

    生长素和NO APICAL MERISTEMNAM)/CUP-SHAPED COTYLEDONCUC)转录因子的相互作用参与单叶和复叶叶片边缘形态发育的调控。NAM /CUC转录因子调控发育的许多方[3,4]NAM /CUC促进拟南芥(Arabidopsis thaliana)叶片边缘锯齿形[5],促进复叶中小叶的分离和分[6]NAM/CUC表达缺失使叶片形态简单[7,8]miR164抑制一系列CUC基因的表达。

    在番茄(Lycopersicon esculentum)中表达miR164不敏感的NAM/CUC结构域转录因子基因GOBLETGOB)基因使小叶边缘异位起始表达,最终形成形式相对野生型简单并且深裂的叶片。GOB表达量降低和GOB表达区域的扩增均会导致小叶的融[7]GOB有差别地和不连续地表达对于小叶的分离是必须的。NAM/CUC基因是保守的叶边缘结构定位和分离的调节基因。

  • 1.1.2 生长素及其相关基因(PIN1SLM1E基因)

    1.1.2

    生长素参与叶片边缘锯齿的形成、小叶和叶裂从复叶叶原基边缘的起始和分离,其作用与其在叶片从叶原基的起始中的作用相[9]。在复叶中,抑制生长素转运或活性会导致叶片简化。此外,PIN1的亚细胞聚集点预标记小叶起始的位置,生长素响应原件DR5在这里大量表达,然而施加外源生长素导致叶片和小叶异位发[10],即生长素浓度最大点的离散分布促进小叶的起始和生长。苜蓿突变体slm1MtPIN10/SLM1PIN1的同源基因)叶片的复杂性增高并且叶边缘复杂性降低,表明生长素对苜蓿叶片的发育的调控是一个错综复杂的过程,然而slm1突变体叶片的融合生长可能是导致其叶片复杂性增高的原因之[11,12]

    ENTIREE, SlIAA9)基因编码一个Aux/IAA生长素响应抑制家族蛋[7]。番茄e突变体的叶片比野生型叶片简[13]e突变体的叶片原基起始小叶但最终形成的叶片小叶融[10,13]。在e突变体叶原基中PIN1:PIN1-GFP报告基因的表达提高并且生长素响应元件DR5的表达扩展到整个叶片边[10]。这表明E基因通过抑制生长素的响应来限制小叶的生长。

    在拟南芥中,生长素调控NAM/CUC在茎顶端分生组织和叶片中的表[9,14],在番茄中,生长素影响GOB在茎顶端的表达而不影响其在叶原基中的表达。另外,在番茄叶片发育调控通路中生长素处于GOB的下游,并且生长素受GOBE基因的共同调[10]。在gobe双突变背景下,小叶发育起始被完全抑制,表明GOB和E蛋白通过不同的通路调控叶片发[10]

    综上所述,生长素在调节叶边缘结构的形成和生长中发挥重要作用。

  • 1.1.3 Potato-leafC)基因

    1.1.3

    番茄的Potato-leafC)基因是拟南芥边缘调节基因REGULATOR OF AXILLARY MERISTEMS1 RAX1)的同源基因;与野生型番茄相比,c突变体的叶片复杂性降低、叶片边缘光滑。在cgob的双突变背景下叶片不能发育起始,表明CGOB基因在调节叶边缘发育中部分冗[14,15]

  • 1.1.4 LYRATELYR)基因

    1.1.4

    番茄LYRATELYR)基因是拟南芥JAG基因的同源基因,能促进叶片边缘器官生长,其作用机理与JAG促进拟南芥叶片生长的作用相似。与野生型番茄相比,lyr突变体叶片上小叶增多,LYR基因过表达导致小叶融[16]。LYR可能影响生长素应答或分[16]。在拟南芥中,CUCs基因、AS1和生长素响应基因为CIN-TCPs蛋白的目标基[17]CIN-TCPs基因表达下降、CUCsSTIMPY/WOX9基因表达增强导致拟南芥复叶状叶片的产[18]。以上研究表明同一基因可以影响叶片发育成熟和叶边缘形态发育。

  • 1.1.5 RCO同源结构域蛋白

    1.1.5

    REDUCED COMPLEXITY(RCO)同源结构域蛋白是叶片小叶发育所必须的因[19]。RCO通过抑制小叶之间组织的生长来促进复叶发育,然而RCO不影响生长素响应分[19]。通过比较几种荠属植物的叶片解剖结构发现RCO旁系同源基因的多样化能够解释十字花科植物叶片形态的自然变异。在某些情况下RCO的表达响应温度的变化,因此RCO可能参与不同温度下叶片形态的塑造。

  • 1.1.6 tasiRNA途径

    1.1.6

    除过以上讨论的基因和植物激素,反式小干扰RNA(tasiRNA)途径中的因子参与叶边缘形态发育。在番茄的tasiRNA途径中的几个基因发生突变,这几个基因是ARF2, 3 and 4的负调控因子,导致番茄出现“wiry”症状,即叶片狭窄并且复杂性降[20,21]。同样的tasiRNA途径在苜蓿中的作用相对温和,产生小叶叶裂加深但小叶数目未受影响,然而其在拟南芥叶片发育不起作用。因此,某些叶边缘形态调控机制在不同物种之间存在保守性,然而另外一些机制对不同物种叶边缘发育的调控存在本质差异。

  • 1.2 拟南芥叶边缘锯齿发育的调控

    1.2

    随着拟南芥植物的发育,叶片的锯齿更加明显,后生的茎生叶比早期的基生叶具有更多的叶边缘锯齿。拟南芥叶边缘锯齿的发育受mir164ACUC2PIN1DPA4SVR9-1SVR9L-1的调[5,9]。调控模式见图1mir164a敲除后导致CUC2的表达水平升高,突变体表现出叶边缘锯齿加[5]mir164acuc2双突变体叶边缘光滑,表明CUC2在拟南芥叶边缘锯齿的形成中发挥关键作用,并且锯齿状的程度取决于共表达的MIR164ACUC2的平[5]。Nikovics[1]人的研究表明CUC2促进叶缘锯齿齿状部分的生长,而另有数据显示CUC2通过抑制叶缘锯齿凹陷部分组织的生长从而实现锯齿的突出。

    锯齿的顶端为生长素浓度最大点,同时生长素抑制此处CUC2基因的表达。通过施加外源生长素而打破生长素在叶边缘的离散分布或在叶边缘连续表达CUC2均可产生光滑的叶边[22]CUC2的表达需要PIN1聚集点的形成,CUC2促进PIN1的定位,反过来生长素又抑制CUC2的表达,从而形成正常的叶片边[9],因此形成CUC2和生长素之间由PIN1介导的反馈调控通[9]PIN1表达缺失导致叶边缘光[9],即NAM/CUCs和生长素的互作调节形式多样的叶片形态。

    dpa4缺失突变体叶边缘锯齿增强,DPA4过表达株系叶边缘锯齿减弱。并且DPA4过表达株系中CUC2的表达水平显著下降,即DPA4抑制CUC2的表[22]。从而又显示出CUC2在调控叶边缘锯齿形成中的重要作用。

    SUPPRESSOR OF VARIEGATION9 SVR9)编码叶绿体翻译起始因子3(IF3[23]SVR9与其同源基因SVR9L1功能冗余。svr9-1svr9-1 svr9l-1突变体均表现出多方面叶片发育表型,由于生长素的内稳态被打破,叶片锯齿程度加深。遗传学分析表明,SVR9/SVR9L1介导的叶边缘发育依赖CUC2的活性。揭示出叶绿体IF3s能够调控叶片发[23]

    图 1
                            拟南芥叶边缘发育调控模式

    图 1 拟南芥叶边缘发育调控模式

    Fig.1 Regulation model of leaf margin development in Arabidopsis thaliana

    注:(A) 叶边缘锯齿形成模式图;(B) 几种叶边缘发育调控因子的互相作用

    NOTE: (A) leaf serration formation model; (B) interaction of several impact factors on leaf margin development

    叶边缘形态依赖于叶片生长区域和抑制区域的弹性定位。通过调节植物激素、转录因子和生长调节因子的相互作用,可以产生无限种叶缘的可能性。另外生长素是叶边缘形态发育中的一个重要因素,参与多条不同通路调控叶边缘形态发育,然而每条通路之内的调控因子和不同因子的上下游关系并未完全清晰,另外,不同调控通路如何联系从而连接成网络等问题还有待深入研究。

  • 2 植物叶脉发育的分子机制

    2
  • 2.1 叶脉的结构

    2.1

    叶脉是叶片中输送水分和营养以及起支撑作用的组织,在植物生长发育过程中发挥重要作用。由于子叶叶脉的结构相对简单,因此子叶成为研究维管发育的理想材料。拟南芥子叶叶脉的结构为:中脉从叶柄起始延伸至子叶,中脉两侧的远端弧线为远端次级叶脉,靠近叶柄两侧的弧线构成近端次级叶脉,次级叶脉与中脉闭合所形成近远端着生[24]。子叶叶脉发育分为四个阶段:原维管组织分化,原维管组织向原形成层的转化,次级细胞壁的形成,以及叶脉的形[25]

  • 2.2 叶脉发育缺陷突变体

    2.2
  • 2.2.1 叶脉减少突变体

    2.2.1

    AXR6编码SCF泛素酶的CUL1亚基。在axr6突变体中,由于AXR6不能够正常地参与装配SCF,而导致AXR2/IAA7蛋白的降解减慢。axr6突变体表现出子叶叶脉减少表型。MP编码ARF5蛋白,参与生长素诱导的基因表达的调[26]。同类表型的突变体还有mpbdlBDL编码IAA12,ARF结合DNA激活基因的表达,而IAA与ARF结合从而抑制下游基因的表[27]。另有研究表明MPBDL在胚胎发育阶段呈现出共表达的表达模式,并且两种蛋白在体外互[27]axr6、mpbdl突变体不仅均具有叶脉发育表型,同时还表现出花序茎发育缺陷,AXR6MPBDL基因可能参与同一信号通路。

  • 2.2.2 不连续叶脉突变体

    2.2.2

    野生型叶脉的一个典型特征是一支叶脉的末端与另一支叶脉相连接,cvp1cvp2突变体表现为不同程度的子叶叶脉不连续状,cvp2叶片的高级叶脉片段化;sfcvan3互为等位基因突变体;CVP1编码固醇甲基转移[28]CVP2编码一个多磷酸肌醇-5-磷酸酶。cvp1cvp2突变体对生长素不敏[27]SFC编码GTPase小家族的一个ADP核糖基化因[29]

  • 2.2.3 叶脉复杂性降低的突变体

    2.2.3

    asymmetric leaf 1as1)和asymmetric leaf 2as2)两种突变体均表现为叶脉均减少并且连续性降低的表[30]AS2编码一个亮氨酸拉链蛋白,参与调控KNOX基因的表达,AS1编码一个MYB转录因子。AS2与AS1共同参与叶片远近轴极性的分[30]

  • 2.2.4 叶脉复杂性增高的突变体

    2.2.4

    gnom/emb30突变体叶片叶脉增多同时子叶叶脉发育缺陷。gnom/emb30突变体中不正常的囊泡运输导致PIN1蛋白的定位错误,可能生长素的运输异常而产生叶脉表[28]

  • 2.3 叶脉发育调控机理

    2.3

    以上研究成果表明,生长素在子叶叶脉形成中起到关键性的作用。生长素渠化模型认为,PIN1的表达和生长素的流动诱导叶原基向原形成层细胞的分化。PIN1将细胞内的生长素输送至细胞外,生长素诱导MP的转录,AUX/IAA抑制新合成的MP(monopteros)的活性并且调控PIN1的组织特异性表[31]。当游离的生长素降解AUX/IAA后MP成为活性状态,具有活性的MP和生长素一同调控PIN1的表达,MP和PIN1的浓度随着生长素浓度的增高而增高。如此形成的正反馈调控促使叶脉的形成。另有研究表明,MP诱导ATHB8的表达,ATHB8水平的提高促进正反馈循环的持续进行。调控模式见图2

    图 2
                            参与调控生长素流动和基因表达的正向反馈调控模型

    图 2 参与调控生长素流动和基因表达的正向反馈调控模型

    Fig. 2 Model of a positive feedback loop between auxin flow and gene expression

    目前一系列与叶脉发育相关的因素被研究和发现,以及auxin-MP-PIN1-ATHB8的正反馈循环对叶脉的发育起到重要的作用,然而想要对叶脉发育的机理做出清晰的阐述还需对不同的调节因子进行深入研究,以阐明不同因子之间的相互作用。

  • 3 展 望

    3

    经过科研工作着的不懈努力,关于叶片形态发育方面的研究已取得了很多成果。可以肯定的是:首先,叶片边缘和叶脉发育受到一系列不连续的顺序表达的发育因子的调控;其次,叶脉和叶边缘的生长与表皮细胞生长素的聚集点以及生长素的流动相关,然而生长素聚集点的产生和分布的机理并不清晰。生长素与诸多调控因子的相互作用将是今后叶片形态发育方面努力探寻的重要方向。

  • 参考文献

    • 1

      Nikovics K, Blein T, Peaucelle A, et al. The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. The Plant Cell, 2006, 18, 2929-2945.

    • 2

      Aida M, Tasaka M. Genetic control of shoot organ boundaries [J]. Curr Opin Plant Biol, 2006, 9(1): 72-77.

    • 3

      Ž dníkov P, Simon R. How boundaries control plant development [J]. Curr Opin Plant Biol, 2014, 17: 116-125.

    • 4

      Hasson A, Plessis A, Blein T, et al. Evolution and diverse roles of the CUP-SHAPED COTYLEDON genes in Arabidopsis leaf development [J]. Plant Cell, 2011, 23(1): 54-68.

    • 5

      Brand A, Shirding N, Shleizer S, et al. Meristem maintenance and compound-leaf patterning utilize common genetic mechanisms in tomato [J]. Planta, 2007, 226(4): 941-951.

    • 6

      Berger Y, Harpaz-Saad S, Brand A, et al. The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves [J]. Development, 2009, 136(5): 823-832.

    • 7

      Blein T, Pulido A, Vialette-Guiraud A, et al. A conserved molecular framework for compound leaf development [J]. Science, 2008, 322(5909): 1835-1839.

    • 8

      Busch B L, Schmitz G, Rossmann S, et al. Shoot branching and leaf dissection in tomato are regulated by homologous gene modules [J]. Plant Cell, 2011, 23(10): 3595-3609.

    • 9

      Bilsborough G D, Runions A, Barkoulas M, et al. Model for the regulation of Arabidopsis thaliana leaf margin development [J]. Proc Natl Acad Sci U S A, 2011, 108(8): 3424-3429.

    • 10

      Ben-Gera H, Shwartz I, Shao M R, et al. ENTIRE and GOBLET promote leaflet development in tomato by modulating auxin response [J]. Plant, 2012, 70(6): 903-915.

    • 11

      Peng J, Chen R. Auxin efflux transporter MtPIN10 regulates compound leaf and flower development in Medicago truncatula [J]. Plant Signal Behav, 2011, 6(10): 1537-1544.

    • 12

      Zhou C, Han L, Hou C Y, et al. Developmental analysis of a Medicago truncatula smooth leaf margin1 mutant reveals context-dependent effects on compound leaf development [J]. Plant Cell, 2011, 23(6): 2106-2124.

    • 13

      Dengler N G. Comparison of leaf development in normal (+/+), entire (e/e), and lanceolate (La/+) plants of tomato, lycopersicon esculentum ‘ailsa craig’ [J]. Bot Gaz, 1984, 145(1): 66-77.

    • 14

      Aida M, Tasaka M. Genetic control of shoot organ boundaries [J]. Curr Opin Plant Biol, 2006, 9(1): 72-77.

    • 15

      Clayberg C D, Butler L, Kerr E A, et al. Third list of known genes in the tomato [J]. J Hered, 1966, 57(5): 189-196.

    • 16

      David-Schwartz R, Koenig D, Sinha N R. LYRATE is a key regulator of leaflet initiation and lamina outgrowth in tomato [J]. Plant Cell, 2009,21(10): 3093-3104.

    • 17

      Blein T, Pautot V, Laufs P. Combinations of mutations sufficient to alter Arabidopsis leaf dissection [J]. Plants (Basel), 2013, 2(2): 230-247.

    • 18

      Vlad D, Kierzkowski D, Rast M I, et al. Leaf shape evolution through duplication, regulatory diversification, and loss of a homeobox gene [J]. Science, 2014, 343(6172): 780-783.

    • 19

      Sicard A, Thamm A, Marona C, et al. Repeated evolutionary changes of leaf morphology caused by mutations to a homeobox gene [J]. Curr Biol, 2014, 24(16): 1880-1886.

    • 20

      Yifhar T, Pekker I, Peled D, et al. Failure of the tomato trans-acting short interfering RNA program to regulate AUXIN RESPONSE FACTOR3 and ARF4 underlies the wiry leaf syndrome [J]. Plant Cell, 2012, 24(9): 3575-3589.

    • 21

      Zhou C, Han L, Fu C X, et al. The trans-acting short interfering RNA3 pathway and no apical meristem antagonistically regulate leaf margin development and lateral organ separation, as revealed by analysis of an argonaute7/lobed leaflet1 mutant in Medicago truncatula [J]. Plant Cell, 2013, 25(12): 4845-4862.

    • 22

      Hellmann H, Hobbie L, Chapman A, et al. Arabidopsis AXR6 encodes CUL1 implicating SCF E3 ligases in auxin regulation of embryogenesis [J].EMBO J, 2003, 22(13): 3314-3325.

    • 23

      Zheng M D, Liu X Y, Liang S, et al. Chloroplast translation initiation factors regulate leaf variegation and development [J]. Plant Physiol, 2016, 172(2): 1117-1130.

    • 24

      Hobbie L, McGovem M, Hurwitz L R, et al. The axr6 mutants of Arabidopsis thaliana define a gene involved in auxin response and early development [J]. Development, 2000, 127(1): 23-32.

    • 25

      Hamann T, Benkova E, Bäurle I, et al. The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning [J]. Genes Dev, 2002, 16(13): 1610-1615.

    • 26

      Deyholos M K, Cordner G, Beebe D, et al. The SCARFACE gene is required for cotyledon and leaf vein patterning [J]. Development, 2000, 127(15): 3205-3213.

    • 27

      Sieburth L E, Muday G K, King E J, et al. SCARFACE encodes an ARF-GAP that is required for normal auxin efflux and vein patterning in Arabidopsis [J]. Plant Cell, 2006, 18(6): 1396-1411.

    • 28

      Iwakawa H, Ueno Y, Semiarti E, et al. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana, required for formation of a symmetric flat leaf lamina, encodes a member of a novel family of proteins characterized by cysteine repeats and a leucine zipper [J]. Plant Cell Physiol, 2002, 43(5): 467-478.

    • 29

      Chalfun-junior A, Franken J, Mes J J, et al. ASYMMETRIC LEAVES2-LIKE1 gene, a member of the AS2/LOB family, controls proximal-distal patterning in Arabidopsis petals [J]. Plant Mol Biol Rep, 2005, 57(4): 559-575.

    • 30

      Turner S, Sieburth L E. Vascular patterning [J]. Arabidopsis Book, 2003, 2: e0073.

    • 31

      Scarpella E, Marcos D, Friml J, et al. Control of leaf vascular patterning by polar auxin transport [J]. Genes Dev, 2006, 20(8): 1015-1027. □

郑梦迪

机 构:西安医学院 药学院,陕西 西安 710021

Affiliation:College of Pharmacy, Xi’an Medical University, Xi’an 710021, Shaanxi, China

邮 箱:670677492@qq.com

作者简介:郑梦迪(1988-),女,博士,讲师,主要从事分子生物学研究,E-mail:670677492@qq.com

王春阳

机 构:西安医学院 药学院,陕西 西安 710021

Affiliation:College of Pharmacy, Xi’an Medical University, Xi’an 710021, Shaanxi, China

张寒

机 构:西安医学院 药学院,陕西 西安 710021

Affiliation:College of Pharmacy, Xi’an Medical University, Xi’an 710021, Shaanxi, China

张彦

机 构:西安医学院 药学院,陕西 西安 710021

Affiliation:College of Pharmacy, Xi’an Medical University, Xi’an 710021, Shaanxi, China

汪兴军

机 构:西安医学院 药学院,陕西 西安 710021

Affiliation:College of Pharmacy, Xi’an Medical University, Xi’an 710021, Shaanxi, China

html/swzy/201901004/alternativeImage/d6d8f955-37b9-469a-9cdc-fbd9b3b196f1-F001.jpg
html/swzy/201901004/media/d6d8f955-37b9-469a-9cdc-fbd9b3b196f1-image002.png

图 1 拟南芥叶边缘发育调控模式

Fig.1 Regulation model of leaf margin development in Arabidopsis thaliana

图 2 参与调控生长素流动和基因表达的正向反馈调控模型

Fig. 2 Model of a positive feedback loop between auxin flow and gene expression

image /

(A) 叶边缘锯齿形成模式图;(B) 几种叶边缘发育调控因子的互相作用

(A) leaf serration formation model; (B) interaction of several impact factors on leaf margin development

无注解

  • 参考文献

    • 1

      Nikovics K, Blein T, Peaucelle A, et al. The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. The Plant Cell, 2006, 18, 2929-2945.

    • 2

      Aida M, Tasaka M. Genetic control of shoot organ boundaries [J]. Curr Opin Plant Biol, 2006, 9(1): 72-77.

    • 3

      Ž dníkov P, Simon R. How boundaries control plant development [J]. Curr Opin Plant Biol, 2014, 17: 116-125.

    • 4

      Hasson A, Plessis A, Blein T, et al. Evolution and diverse roles of the CUP-SHAPED COTYLEDON genes in Arabidopsis leaf development [J]. Plant Cell, 2011, 23(1): 54-68.

    • 5

      Brand A, Shirding N, Shleizer S, et al. Meristem maintenance and compound-leaf patterning utilize common genetic mechanisms in tomato [J]. Planta, 2007, 226(4): 941-951.

    • 6

      Berger Y, Harpaz-Saad S, Brand A, et al. The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves [J]. Development, 2009, 136(5): 823-832.

    • 7

      Blein T, Pulido A, Vialette-Guiraud A, et al. A conserved molecular framework for compound leaf development [J]. Science, 2008, 322(5909): 1835-1839.

    • 8

      Busch B L, Schmitz G, Rossmann S, et al. Shoot branching and leaf dissection in tomato are regulated by homologous gene modules [J]. Plant Cell, 2011, 23(10): 3595-3609.

    • 9

      Bilsborough G D, Runions A, Barkoulas M, et al. Model for the regulation of Arabidopsis thaliana leaf margin development [J]. Proc Natl Acad Sci U S A, 2011, 108(8): 3424-3429.

    • 10

      Ben-Gera H, Shwartz I, Shao M R, et al. ENTIRE and GOBLET promote leaflet development in tomato by modulating auxin response [J]. Plant, 2012, 70(6): 903-915.

    • 11

      Peng J, Chen R. Auxin efflux transporter MtPIN10 regulates compound leaf and flower development in Medicago truncatula [J]. Plant Signal Behav, 2011, 6(10): 1537-1544.

    • 12

      Zhou C, Han L, Hou C Y, et al. Developmental analysis of a Medicago truncatula smooth leaf margin1 mutant reveals context-dependent effects on compound leaf development [J]. Plant Cell, 2011, 23(6): 2106-2124.

    • 13

      Dengler N G. Comparison of leaf development in normal (+/+), entire (e/e), and lanceolate (La/+) plants of tomato, lycopersicon esculentum ‘ailsa craig’ [J]. Bot Gaz, 1984, 145(1): 66-77.

    • 14

      Aida M, Tasaka M. Genetic control of shoot organ boundaries [J]. Curr Opin Plant Biol, 2006, 9(1): 72-77.

    • 15

      Clayberg C D, Butler L, Kerr E A, et al. Third list of known genes in the tomato [J]. J Hered, 1966, 57(5): 189-196.

    • 16

      David-Schwartz R, Koenig D, Sinha N R. LYRATE is a key regulator of leaflet initiation and lamina outgrowth in tomato [J]. Plant Cell, 2009,21(10): 3093-3104.

    • 17

      Blein T, Pautot V, Laufs P. Combinations of mutations sufficient to alter Arabidopsis leaf dissection [J]. Plants (Basel), 2013, 2(2): 230-247.

    • 18

      Vlad D, Kierzkowski D, Rast M I, et al. Leaf shape evolution through duplication, regulatory diversification, and loss of a homeobox gene [J]. Science, 2014, 343(6172): 780-783.

    • 19

      Sicard A, Thamm A, Marona C, et al. Repeated evolutionary changes of leaf morphology caused by mutations to a homeobox gene [J]. Curr Biol, 2014, 24(16): 1880-1886.

    • 20

      Yifhar T, Pekker I, Peled D, et al. Failure of the tomato trans-acting short interfering RNA program to regulate AUXIN RESPONSE FACTOR3 and ARF4 underlies the wiry leaf syndrome [J]. Plant Cell, 2012, 24(9): 3575-3589.

    • 21

      Zhou C, Han L, Fu C X, et al. The trans-acting short interfering RNA3 pathway and no apical meristem antagonistically regulate leaf margin development and lateral organ separation, as revealed by analysis of an argonaute7/lobed leaflet1 mutant in Medicago truncatula [J]. Plant Cell, 2013, 25(12): 4845-4862.

    • 22

      Hellmann H, Hobbie L, Chapman A, et al. Arabidopsis AXR6 encodes CUL1 implicating SCF E3 ligases in auxin regulation of embryogenesis [J].EMBO J, 2003, 22(13): 3314-3325.

    • 23

      Zheng M D, Liu X Y, Liang S, et al. Chloroplast translation initiation factors regulate leaf variegation and development [J]. Plant Physiol, 2016, 172(2): 1117-1130.

    • 24

      Hobbie L, McGovem M, Hurwitz L R, et al. The axr6 mutants of Arabidopsis thaliana define a gene involved in auxin response and early development [J]. Development, 2000, 127(1): 23-32.

    • 25

      Hamann T, Benkova E, Bäurle I, et al. The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning [J]. Genes Dev, 2002, 16(13): 1610-1615.

    • 26

      Deyholos M K, Cordner G, Beebe D, et al. The SCARFACE gene is required for cotyledon and leaf vein patterning [J]. Development, 2000, 127(15): 3205-3213.

    • 27

      Sieburth L E, Muday G K, King E J, et al. SCARFACE encodes an ARF-GAP that is required for normal auxin efflux and vein patterning in Arabidopsis [J]. Plant Cell, 2006, 18(6): 1396-1411.

    • 28

      Iwakawa H, Ueno Y, Semiarti E, et al. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana, required for formation of a symmetric flat leaf lamina, encodes a member of a novel family of proteins characterized by cysteine repeats and a leucine zipper [J]. Plant Cell Physiol, 2002, 43(5): 467-478.

    • 29

      Chalfun-junior A, Franken J, Mes J J, et al. ASYMMETRIC LEAVES2-LIKE1 gene, a member of the AS2/LOB family, controls proximal-distal patterning in Arabidopsis petals [J]. Plant Mol Biol Rep, 2005, 57(4): 559-575.

    • 30

      Turner S, Sieburth L E. Vascular patterning [J]. Arabidopsis Book, 2003, 2: e0073.

    • 31

      Scarpella E, Marcos D, Friml J, et al. Control of leaf vascular patterning by polar auxin transport [J]. Genes Dev, 2006, 20(8): 1015-1027. □