en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
SinghR, SinghS, PariharP, et al. Reactive oxygen species (ROS): beneficial companions of plants developmental processes [J]. Front Plant Sci, 2016, 27(7): 1299.
参考文献 2
黄亚成, 秦云霞. 植物中活性氧的研究进展[J]. 中国农学通报, 2012, 28(36): 219-226.
HuangY C, QinY X. Advances on reactive oxygen species in plants [J]. Chin Agric Bull, 2012, 28(36): 219-226.
参考文献 3
NoctorG, Lelarge-TrouverieC, MhamdiA. The metabolomics of oxidative stress [J]. Phytochemistry, 2015, 112(1): 33-53.
参考文献 4
FoyerC H, RubanA V, NoctorG. Viewing oxidative stress through the lens of oxidative signalling rather than damage [J]. Biochem J, 2017, 474(6): 877-883.
参考文献 5
FoyerC H, NoctorG. Stress-triggered redox signalling: what's in pROSpect? [J]. Plant Cell Environ, 2016, 39(5): 951-964.
参考文献 6
CamejoD, ÁGuzmán-Cedeño, MorenoA. Reactive oxygen species, essential molecules, during plant-pathogen interactions [J]. Plant Physiol Biochem, 2016, 103: 10-23.
参考文献 7
SiesH. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress [J]. Redox Biol, 2017, 11: 613-619.
参考文献 8
SuzukiN, MillerG, MoralesJ, et al. Respiratory burst oxidases: the engines of ROS signaling [J]. Curr Opin Plant Biol, 2011, 14(6): 691-699.
参考文献 9
BaxterA, MittlerR, SuzukiN. ROS as key players in plant stress signalling [J]. J Exp Bot, 2014, 65(5): 1229-1240.
参考文献 10
MittlerR, VanderauweraS, SuzukiN, et al. ROS signaling: the new wave? [J]. Trends Plant Sci, 2011, 16(6): 300-309.
参考文献 11
FarmerE E, MuellerM J. ROS- mediated lipid peroxidation and RES-activated signaling [J]. Annu Rev Plant Biol, 2013, 64: 429-450.
参考文献 12
FischerB B, ÉvaH, KriegerliszkayA. Production, detection, and signaling of singlet oxygen in photosynthetic organisms [J]. Antioxid Redox Signal, 2013, 18(16): 2145-2162.
参考文献 13
op den CampR G, PrzybylaD, OchsenbeinC, alet . Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis [J]. Plant Cell, 2003, 15(10): 2320-2332.
参考文献 14
HuangS B, van AkenO, SchwarzländerM, et al. The roles of mitochondrial reactive oxygen species in cellular signaling and stress response in plants [J] Plant Physiol, 2016, 171(3): 1551-1559.
参考文献 15
RamelF, BirticS, GiniesC, et al. Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants [J]. Proc Natl Acad Sci U S A, 2012, 109(14): 5535-5540.
参考文献 16
O'BrienJ A, DaudiA, ButtV S, et al. Reactive oxygen species and their role in plant defence and cell wall metabolism [J]. Planta, 2012, 236(3): 765-779.
参考文献 17
OgasawaraY, KayaH, HiraokaG, et al. Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation [J]. J Biol Chem, 2008, 283(14): 8885-8892.
参考文献 18
NoctorG, FoyerC H. Intracellular redox compartmentation and ROS-related communication in regulation and signaling [J]. Plant Physiol, 2016, 171(3): 1581-1592.
参考文献 19
MhamdiA, HagerJ, ChaouchS, et al. Arabidopsis GLUTATHIONE REDUCTASE1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways [J]. Plant Physiol, 2010, 153(3): 1144-1160.
参考文献 20
MillerG, SuzukiN, Ciftci-YilmazS, et al. Reactive oxygen species homeostasis and signalling during drought and salinity stresses [J]. Plant Cell Environ, 2010, 33(4): 453-467.
参考文献 21
MarinoD, DunandC, PuppoA, et al. A burst of plant NADPH oxidases [J]. Trends Plant Sci, 2012, 17(1): 9-15.
参考文献 22
QuevalG, JaillardD, ZechmannB, et al. Increased intracellular H2O2 availability preferentially drives glutathione accumulation in vacuoles and chloroplasts [J]. Plant Cell Environ, 2011, 34(1): 21-32.
参考文献 23
NoctorG, FoyerC H. Intracellular redox compartmentation and ROS-related communication in regulation and signaling [J]. Plant Physiol, 2016, 171(3): 1581-1592.
参考文献 24
KwakJ M, MoriI C, PeiZ M, et al. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis [J]. EMBO J, 2003, 22(11): 2623-2633.
参考文献 25
GilroyS, BiałasekM, SuzukiN, et al. ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants [J]. Plant Physiol, 2016, 171(3): 1606-1615.
参考文献 26
UmezawaT, NakashimaK, MiyakawaT, et al. Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport [J]. Plant Cell Physiol, 2010, 51(11): 1821-1839.
参考文献 27
BoudsocqM, WillmannM R, MccormackM, et al. Differential innate immune signalling via Ca2+ sensor protein kinases [J]. Nature, 2010, 464(7287): 418-422.
参考文献 28
ZhangW, JeonB W, AssmannS M. Heterotrimeric G-protein regulation of ROS signalling and calcium currents in Arabidopsis guard cells [J]. J Exp Bot, 2011, 62(7): 2371-2379.
参考文献 29
ZermianiM, ZoninE, NonisA, et al. Ethylene negatively regulates transcript abundance of ROP-GAP rheostat-encoding genes and affects apoplastic reactive oxygen species homeostasis in epicarps of cold stored apple fruits [J]. J Exp Bot, 2015, 66(22): 7255-7270.
参考文献 30
WeyemiU, DupuyC. The emerging role of ROS-generating NADPH oxidase NOX4 in DNA-damage responses [J]. Mutat Res, 2012, 751(2): 77-81.
参考文献 31
KadotaY, ShirasuK, ZipfelC. Regulation of the NADPH oxidase RBOHD during plant immunity [J]. Plant Cell Physiol, 2015, 56(8): 1472-1480.
参考文献 32
马丽娅. 水淹胁迫下NADPH氧化酶AtrbohD的功能研究 [D]. 开封: 河南大学, 2011.
MaL Y. Investigation on functions of NADPH oxidase AtrbohD in Arabidopsis thaliana under waterlogging stress [D]. Kaifeng: Henan University, 2011.
参考文献 33
董亮, 何永志, 王远亮, 等. 超氧化物歧化酶(SOD)的应用研究进展 [J]. 中国农业科技导报, 2013, 15(5): 53-58.
DongL, HeY Z, WangY L, et al. Progress on application of superoxide dismutase (SOD) [J]. J Agric Sci Tech China, 2013, 15(5): 53-58.
参考文献 34
马伟荣, 童军茂, 单春会. 超氧化物歧化酶(SOD)的特征及在植物抗逆性方面的研究进展 [J]. 食品工业, 2013, 34(9): 154-158.
MaW R, TongJ M, ShanC H. The characteristics of superixide dismutase and its research in plant resistance [J]. Food Industry, 2013, 34(9): 154-158.
参考文献 35
PolleA. Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis [J]. Plant Physiol, 2001, 126(1): 445-462.
参考文献 36
AlscherR G, ErturkN, HeathL S. Role of superoxide dismutases(SODs) in controlling oxidative stress in plants [J]. J Exp Bot, 2002, 53(372): 1331-1341.
参考文献 37
杨佳栋, 魏凤菊, 潘新新, 等. 动物过氧化氢酶(CAT)的研究进展 [J]. 黑龙江畜牧兽医, 2016(7): 59-62.
YangJ D, WeiF J, PanX X, et al. Research process of animal catalase (CAT) [J]. Heilongjiang Animal Science and Veterinary Medicine, 2016(7): 59-62.
参考文献 38
陈金峰, 王宫南, 程素满. 过氧化氢酶在植物胁迫响应中的功能研究进展 [J]. 西北植物学报, 2002, 28(1): 188-193.
ChenJ F, WangG N, ChengS M. Progress about Catalase Function in Plant Stress Reactions [J]. Acta Bot Boreali-Occident Sin, 2008, 28(1): 188-193.
参考文献 39
MhamdiA, NoctorG, BakerA. Plant catalases: peroxisomal redox guardians [J]. Arch Biochem Biophys, 2012, 525(2): 181-194.
参考文献 40
FekiK, KamounY, Ben MahmoudR, et al. Multiple abiotic stress tolerance of the transformants yeast cells and the transgenic Arabidopsis plants expressing a novel durum wheat catalase [J]. Plant Physiol Biochem, 2015, 97: 420-431.
参考文献 41
ChenH J, WuS D, HuangG J, et al. Expression of a cloned sweet potato catalase SPCAT1 alleviates ethephon-mediated leaf senescence and H2O2 elevation [J]. J Plant Physiol, 2012, 169(1): 86-97.
参考文献 42
杨燕萍, 完莉萍, 孔维宝. 大麦过氧化物酶(POD)的研究进展 [J]. 啤酒科技, 2012(2): 6-8.
YangY P, WanL P, KongW B. Research progress of barley peroxidase (POD) [J]. Beer Sci Technol, 2012(2): 6-8.
参考文献 43
CzégényG, Le MartretB, PávkovicsD, et al. Elevated ROS-scavenging enzymes contribute to acclimation to UV-B exposure in transplastomic tobacco plants, reducing the role of plastid peroxidases [J]. J Plant Physiol, 2016, 201: 95-100.
参考文献 44
庞彩红, 冯兰东, 王宝山. 高等植物中编码APX的基因特点及其与逆境响应的关系 [J]. 山东师范大学学报, 2007, 22(4): 114-116.
PangC H, FengL D, WangB S. Characterization of the gene encoding APX isoenzymes and the response of APX to the stress in higher plants [J]. J Shandong Normal Univ, 2007, 22(4): 114-116.
参考文献 45
HanY, ChaouchS, MhamdiA, et al. Functional analysis of Arabidopsis mutants points to novel roles for glutathione in coupling H2O2 to activation of salicylic acid accumulation and signaling [J]. Antioxid Redox Signal, 2013, 18(16): 2106-2121.
参考文献 46
HanY, MhamdiA, ChaouchS, et al. Regulation of basal and oxidative stress-triggered jasmonic acid-related gene expression by glutathione [J]. Plant Cell Environ, 2013, 36(6): 1135-1146.
参考文献 47
MaQ H, ZhuH H, HanJ Q. Wheat ROP proteins modulate defense response through lignin metabolism [J]. Plant Sci, 2017, 262: 32-38.
参考文献 48
FehérA, LajkóD B. Signals fly when kinases meet Rho-of-plants(ROP) small G-proteins [J]. Plant Sci, 2015, 237: 93-107.
参考文献 49
MiyawakiK N, YangZ. Extracellular signals and receptor-like kinases regulating ROP GTPases in plants [J]. Front Plant Sci, 2014, 22(5): 449.
参考文献 50
Baxter-BurrellA, YangZ B, SpringerP S, et al. RopGAP4-dependent rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance [J]. Science, 2002, 296(5575): 2026-2028.
参考文献 51
范衡宇, 佟超, 孙青原. 丝裂原活化蛋白激酶(MAPK)信号通路的研究进展 [J]. 动物学杂志, 37(5): 98-102.
FanH Y, TongC, SunQ Y. Mitogen-activated protein kinase(MAPK) signaling pathways: state-of-the-art [J]. Chinese Journal of Zoology, 2002, 37(5): 98-102.
参考文献 52
张振才, 梁燕, 李翠. 植物MAPK级联途径及其功能研究进展 [J]. 西北农林科技大学学报, 2014, 42(4): 207-214.
ZhangZ C, LiangY, LiC. Review on plant MAPK cascades and their functions [J]. J Northwest Sci-Tech Univ, 2014, 42(4): 207-214.
参考文献 53
郭芳, 符民桂, 姜志胜. 过氧化物还原酶在MAPK信号通路中的调节作用 [J]. 中国动脉硬化杂志, 2016, 24(11): 1163-1168.
GuoF, FuM G, JiangZ S. Regulation role of peroxiredoxins involved into MAPK signalling pathways [J]. Chin J Arteriosclerosis, 2016, 24(11): 1163-1168.
参考文献 54
潘教文, 李德全. 植物MAPK信号转导组分的细胞定位与选择性剪接 [J]. 中国生物化学与分子生物学报, 2010, 26(5): 393-400.
PanJ W, LiD Q. Cellular localization of components of mitogen-activated protein kinase(MAPK) cascades and alternative splicing [J]. Chin J Biochem Molecular Biology, 2010, 26(5): 393-400.
参考文献 55
ZhangJ, ShaoF, LiY, et al. A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants [J]. Cell Host Microbe, 2007, 1(3): 175-185.
参考文献 56
KawarazakiT, KimuraS, IizukaA, et al. A low temperature-inducible protein AtSRC2 enhances the ROS-producing activity of NADPH oxidase AtRbohF [J]. Biochim Biophys Acta, 2013, 1833(12): 2775-2780.
参考文献 57
SmékalováV, DoskočilováA, KomisG, et al. Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants [J]. Biotechnol Adv, 2014, 32(1): 2-11.
参考文献 58
ZhangJ Y, GuoY, SiJ P, et al. A polysaccharide of Dendrobium officinale ameliorates H2O2-induced apoptosis in H9c2 cardiomyocytes via PI3K/AKT and MAPK pathways [J]. Int J Biol Macromol, 2017, 104(Pt A): 1-10.
参考文献 59
BaruahK, NorouzitallabP, LinayatiL, et al. Reactive oxygen species generated by a heat shock protein(Hsp) inducing product contributes to Hsp70 production and Hsp70-mediated protective immunity in Artemia franciscana against pathogenic vibrios [J]. Dev Comp Immunol, 2014, 46(2): 470-479.
参考文献 60
ChanderK, VaibhavK, Ejaz AhmedM, et al. Quercetin mitigates lead acetate-induced behavioral and histological alterations via suppression of oxidative stress, Hsp-70, Bak and upregulation of Bcl-2 [J]. Food Chem Toxicol, 2014, 68: 297-306.
参考文献 61
QianJ, ChenJ, LiuY F, et al. Overexpression of Arabidopsis HsfA1a enhances diverse stress tolerance by promoting stress-induced Hsp expression [J]. Genet Mol Res, 2014, 13(1): 1233-1243.
参考文献 62
LiuY F, ZhangC X, ChenJ, et al. Arabidopsis heat shock factor HsfA1a directly senses heat stress, pH changes, and hydrogen peroxide via the engagement of redox state [J]. Plant Physiol Biochem, 2013, 64: 92-98.
参考文献 63
AhnS G, ThieleD J. Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress [J]. Genes Dev, 2003, 17(4): 516-528.
参考文献 64
YuanZ G, JiangH, ZhuX H, et al. Ginsenoside Rg3 promotes cytotoxicity of Paclitaxel through inhibiting NF-κB signaling and regulating Bax/Bcl-2 expression on triple-negative breast cancer [J]. Biomed Pharmacother, 2017, 89: 227-232.
参考文献 65
IshikawaT, UchimiyaH, Kawai-YamadaM. The role of plant Bax inhibitor-1 in suppressing H2O2-induced cell death [J]. Meth Enzymol, 2013, 527: 239-256.
参考文献 66
QinW W, RenB, WangS S, et al. Apigenin and naringenin ameliorate PKCβII-associated endothelial dysfunction via, regulating ROS/caspase-3 and NO pathway in endothelial cells exposed to high glucose [J]. Vascul Pharmacol, 2016, 85: 39-49.
参考文献 67
ImtiazM, AshrafM, RizwanM S, et al. Vanadium toxicity in chickpea (Cicer arietinum L.) grown in red soil: effects on cell death, ROS and antioxidative systems [J]. Ecotoxicol Environ Saf, 2018, 158: 139-144.
参考文献 68
QiJ S, SongC P, WangB S, et al. Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack [J]. J Integr Plant Biol, 2018, 60(9): 805-826.
参考文献 69
BaxterA, MittlerR, SuzukiN. ROS as key players in plant stress signalling [J]. J Exp Bot, 2014, 65(5): 1229-1240. □
目录 contents

    摘要

    植物在生长发育的过程中会产生代谢副产物活性氧,其含量在植物生长过程中起双重作用。适量的活性氧可提高植物对逆境胁迫的耐受性,但是过量的活性氧会诱发氧化猝发反应,严重影响植物的生长发育。因此,提高植物的抗氧化能力对于提高植物的抗逆能力来说显得尤为重要,该方面的研究也成为近年来逆境生物学的一大热点。植物体为了应对逆境环境造成的活性氧动态失衡,进化出了含酶和非酶组分的抗氧化系统。本文主要介绍了参与高等植物活性氧代谢的相关物质,对近年来国内外报道的代谢途径进行了综述,为提高植物的抗逆能力提供参考依据。

    Abstract

    In the process of growth and development, plants produce metabolic byproducts of reactive oxygen species, which play a dual role in plant growth. Appropriate amount of active oxygen species can increase the tolerance of plants to stress. However, excessive reactive oxygen species can induce oxidative burst reactions, which seriously affect the growth and development of plants. Therefore, improving the antioxidant capacity of plants is particularly important for improving the ability to resist stress. This research has also become a research hot spot in adversity biology in recent years. The plant evolved an antioxidant system containing enzymes and non-enzyme components in response to the dynamic imbalance of reactive oxygen species caused by the adverse environment. This paper mainly introduces the related substances involved in the metabolism of reactive active oxygen species in plants. The metabolic pathways reported in recent years are reviewed, which provides a reference for improving the resistance of plants.

  • 0 引 言

    0

    在植物正常代谢过程中,分子氧在高能级状态接受电子,经过部分还原后产生一系列氧的化合物及衍生物,如超氧阴离子(O2•-)、羟基(OH·)、烷氧基(RO·)、过氧化物(ROO·)、过氧化氢(H2O2)和单线氧1O2)等,这些具有活泼化学性质(如强还原性,高能,不稳定等)的物质被统称为活性氧(reactive oxygen species, ROS)[1]

    植物在生长发育的过程中产生的代谢副产物ROS含量在植物生长过程中起双重作用。适量的ROS可通过作为信号分子诱导防御基因的表达,强化细胞壁,杀害病原物,或使植物体进入细胞凋亡程序等方式来完成对逆境胁迫的响[2]。在拟南芥(Arabidopsis thaliana)、水稻(Oryza sativa)发芽的细胞组织中检测到少量OH·和O2•-,它们可使细胞壁松弛,甚至代替生长素来诱导细胞生长。这些ROS和激素通过使蛋白质氧化、调节基因表达的方式参与种子休眠的解除和发芽过[2]。当植物处于水淹、高盐、干旱、高温、低温、营养匮乏等逆境或衰老状态时,体内便会积累大量的ROS,导致氧化猝发。过量的ROS能与磷脂、膜受体蛋白发生脂质过氧化反应,破坏膜系统的完整性和流动性,影响植物泡膜运输功能,甚至会攻击基因组DNA,造成DNA损伤,严重影响植物的生长发[3]。因此要想提高植物的抗逆能力,就需要提高植物的抗氧化能力,此方面的研究也成为逆境生物学的一大热点。近年来研究表明,植物体内ROS的动态平衡状态由自身高效的抗氧化酶组分和非酶系统来维[4]。抗氧化系统功能的降低会诱导植物的氧化应激反应,此反应可降低脂氧合酶环氧合酶的活性,为自由基攻击细胞膜产生丙二醛(MDA)等有害物质提供基础,同时,ROS也会导致Ca2+K+运输通道途径异常,影响胞浆离子平衡,影响重要细胞生化途[5]。另一类活性氮(reactive nitrogen species, RNS )也参与植物胁迫反应,如NO能和包括H2O2在内的自由基相互作用,引发胁迫信号响应,诱导耐受机制的产[6]

  • 1 植物中的ROS及其动态平衡调节

    1
  • 1.1 植物中ROS的起源、稳态和功能

    1.1

    ROS能与一个或多个不成对电子形成自由基(如O2•-)或非自由基(如H2O2[7]。在植物体内,ROS与RNS共存,并存在分子间的相互作[8]。如O2•-和一氧化氮自 由基(NO·)可以产生过氧亚硝酸根阴离子(ONOO),既是ROS又可视为RNS,这些分子本身可影响生物细胞组分形成,不断积累后又可引起脂质过氧化,蛋白质损伤,核苷酸降解,甚至最终导致细胞死[9,10]。ROS也是重要的信号分子,根据其浓度的大小,通过亚细胞定位技术诱导和调整植物的生长周[11]。因此,在植物生长发育和应激反应中,ROS受到越来越多的关[12]

    基态分子氧(三重态氧3O2)可接受来自不同细胞的电子(如叶绿体和线粒体电子转移链上的电子和含铁分子)产生O2•-[13,14]。NADPH氧化酶,过氧化物酶(POD),脂氧化酶和环氧化酶,细胞色素P450s和黄嘌呤氧化酶(XO)等也可参与电子转移和ROS生[15,16,17,18]O2•-能自发地或通过超氧化物歧化酶(SOD)催化生成H2O2[19,20,21]。在植物组织中,H2O2O2•-可以由POX和过氧化氢酶(CAT)催化,经过Fenton和Haber-Weiss反应生成HOH2O[22]

  • 1.2 氧化平衡在植物抗逆代谢中的作用

    1.2

    ROS在植物的生理代谢中发挥着重要的双重作[23]。适量的ROS可作为信号分子,诱导植物表达防御基因,激发防御系统发挥作用以完成对逆境胁迫的响[17]。一定浓度的H2O2会诱导植物产生脱落酸(ABA)、调控Ca2+通道和气孔的关闭,阻止病原菌入侵[18]。随后,这些ROS会被细胞内的抗氧化防护机制所清除以保障维持正常的代谢。

    但是,若植物处于深度的逆境胁迫或者发生衰老时,机体内ROS清除机制功能异常,ROS会大量积累,一方面会与磷脂、膜受体蛋白发生脂质过氧化反应,严重破坏膜系统的完整性和流动[19],OH·可直接作用于脂类形成氢过氧化物,进而分解为MDA等强毒力的脂质过氧化终产物,这些产物能交联核酸、脂类、蛋白质及糖类,因此MDA的含量常被用来表征植物遭受逆境胁迫的危害程[5]。另一方面过量的ROS还会攻击植物基因组DNA,对DNA造成不可逆损伤,严重影响植物的生长发育过[20]

    综上所述,植物要具备较高的抗逆能力,首先在面对逆境时,必须迅速增加ROS,另外在对抗逆境结束后,可快速降解ROS[21],即要求植物体处于一种氧化动态平衡状态,必须有一种双重调节ROS的机制,使得ROS的产生与消除能快速达到平衡状[22]

    ROS的产生与代谢在氧化还原生物学中是一个热门话题,研究表明改变植物体内氧化还原稳态可以调节信号传导,细胞代谢和植物应激反[22]。关于ROS是如何参与植物发育和应激反应的信号传导过程的阐明,目前还有待进一步研[23]。 由于不同类型的ROS可能对调节过程具有高度特异性,因此可通过定位细胞中特定物质,来了解它们在不同植物反应中的作用机[24]

  • 2 植物中ROS的合成代谢途径及调节

    2

    ROS的产生与NADPH氧化酶、ROP蛋白(Rho-related GTPases)、促分裂原活化蛋白激酶(MAPK)级联反应、ABA信号和Ca2+等磷酸化调节系统密切相[25]。ABA调控着植物的抗逆反应,一个可能的原因是其可增强植物NADPH氧化酶的活性,诱导H2O2[26]。在水稻遭受稻瘟病、枯萎病的侵袭时,ROP蛋白可在短时间内积累ROS,增强对植物病害的抵抗能[27]。同时,ROP蛋白参与次生壁植物抗逆反应系统的生[28]。此外,MAPK级联反应也参与植物体内ROS的合成与代谢,它可以将特定的转录因子磷酸化从而将细胞表面信号传导到细胞核内部,使得ROS二次产生,诱导植物体一系列抗性基因的表达,调控植物的各种胁迫反应(图1)[29]

    图1
                            高等植物质膜中的ROS

    图1 高等植物质膜中的ROS

    Fig.1 The concept of reactive oxygen species (ROS) in the plasma membrane of higher plants

    细胞内ROS主要在叶绿体和POD与乙醛酸体中产生,在线粒体中产生较少,而细胞膜上的ROS主要由NADPH氧化酶产生,植物中的NADPH氧化酶又叫Rboh(respiratory burst oxidase homologue),其结构包括6个跨膜域,N端有2个保守的Ca2+结合EF手性模体结构,C端中有结合黄素和NADPH的区[5](图2)。Rboh将电子从胞质NADPH或FAD转移至非质体氧以形成O2+,然后通过SOD或自发地转化为OH·和H 2O2[5]。在拟南芥中,编码NADPH氧化酶有10个基因,记作Atrboh A~J,其中Atrboh DAtrboh F在植物与病原体相互作用过程中起关键作[24]。水淹处理过的拟南芥,其Atrboh D基因出现明显下调情况,其基因超表达后,水淹处理后产生H2O2的速度显著快于野生型拟南[17]Atrboh D突变体株产生的ROS明显减少,而在Atrboh F突变体中ROS产量增[24]Atrboh DAtrboh F的双突变体破坏了ABA效应。这些结果表明Atrboh DAtrboh F确实在水淹胁迫信号转导中发挥重要作用。利用Northern技术只能够检测到Rboh DRboh ERboh F的mRNA, 其中Rboh DRboh F的mRNA较丰富, 在根中的含量显著高于叶和[24]。利用RT-PCR方法可检测到Rboh ARhoh BRboh C的mRNA, 其含量在根中多,在地上部分较[30]。在烟草中,Nbrboh ANbrboh B沉默导致ROS产生减少,植株表现出易感病现象,其中Ntrboh D的表达受ABA的正向调[30]

    图2
                            Rboh结构

    图2 Rboh结构

    Fig.2 The structure of Rboh

  • 3 高等植物中ROS的清除系统

    3

    参与植物细胞中ROS清除系统相关的物质和途径有很多,主要有植物体内的酶促清除系统,如SOD、CAT、POD、抗坏血酸过氧化物酶(APX)、胱甘肽还原酶(GR)等抗氧化酶系,另外还有其它非酶促系统,如谷胱甘肽(GSH)、抗坏血酸(AsA)、生育酚及酚类化合物,以及体内MAPK级联反应、ROP蛋白、热激蛋白(heat shock protein,HSP)、BAX、BCL-2、半胱天冬酶家族(casspases)等凋亡蛋白[31]。抗氧化酶系以及各非酶促组分之间在ROS的清除中存在共同调节作用,植物体在受到逆境胁迫时,这些抗氧化酶的活性会发生相应的变化,共同参与调控ROS自由基代谢、细胞膜脂过氧化程度,保护植物免受环境胁迫的危[32]

  • 3.1 抗氧化酶系参与植物体内ROS清除

    3.1

    SOD是一种能使超氧化物发生歧化反应生成O2H2O2的抗氧化[33]。生成的O2H2O2再经CAT和POD催化生成水,以达到清除ROS目[34]。SOD是一类金属蛋白,根据催化中心的金属辅因子可分为四类:Cu/Zn-SOD,主要存在于细胞质和叶绿体中;Fe-SOD,主要存在原核生物和少数植物叶绿体中;Mn-SOD,主要存在于线粒体基质和超氧化物歧化酶体中;Ni-SOD,关于此金属蛋白的研究甚少,杜邦公司利用公共数据库分析其序列,认为这些Ni-SOD大多存在于海洋生物[35]。SOD是ROS清除机制中第一个发挥作用的抗氧化酶,其产物是Haber-Weiss反应的底物,故为保护机制的中[36]。CAT是广泛参与植物抗逆反应的一种末端氧化酶,主要存在于叶绿体和细胞的过氧化物内,按照蛋白质结构和氨基酸序列可分为三类:单功能CAT、双功能CAT和锰CAT[37]。作用机制为催化H2O2分解为H2O和O2,减少H2O2对机体的毒[57]。通过调节植物体内H2O2水平,防止过氧化,减少氧自由基对细胞的损害,防止ROS刺激导致细胞死[38]。POD是一类广泛存在于动植物和微生物体内的氧化还原酶类,以H2O2及类似物作为氧化剂生成H2O[39]。POD可分为三类:第一类包括细胞色素c POD、抗坏血酸POD和细菌过氧化氢酶POD;第二类包括真菌分泌的POD;第三类为植物分泌的POD[40]。在植物体内,POD参与清除H2O2途径,起到调节植物生长发育的作用,增强对环境胁迫应答能[41]。APX是一类参与植物细胞AsA-GSH循环的重要酶[42]。其作用机理为:将AsA作为电子供体使H2O2转化成H2O[43]。若其活性升高,则可使O2•-产生速率下降,脂质过氧化作用减[44]。GR是一种利用还原型NADP将氧化型谷胱甘肽(GSSG)催化成还原型谷胱甘肽(GSH)的酶,为ROS的清除提供还原[45]。其主要功能是维持细胞内GSH/GSSG比率,参与植物抗AsA- GSH循环,与SOD、APX及磷酸戊糖途径的关键酶-葡萄糖6磷酸脱氢酶共同参与植物体内多余ROS的清[46]

    SOD, CAT, POD, APX, GR等抗氧化酶在ROS的清除中存在相互调节作用,植物体在受到逆境胁迫时,这些抗氧化酶的活性会发生相应的变化,共同参与调控ROS代谢、细胞膜脂过氧化程度,保护植物免受环境胁迫的危害。

  • 3.2 G蛋白ROP参与植物体内ROS代谢

    3.2

    G蛋白广泛存在于酵母,动物以及植物等所有真核生物中,其构成的超基因家族在结构上至少分为五种:Ras,Rho,Rab,Arf/Sar1和Ran。在动物和真菌中,Rho家族又分为Rac、 Rho和CDC42亚家族。植物中含有一个独特的Rho亚家族,命名为植物的Rho-like GTP酶(ROP[47]。ROP蛋白作为一系列生理过程的分子开关,参与信号转导、细胞增殖、细胞骨架的合成、细胞内膜形成、物质的膜泡运输、细胞极性的形成、ABA信号转导及胞内氧的氧化平衡等诸多途径,是植物体内重要的信号转导蛋[48]。ROP蛋白是一类GTP结合蛋白,是NADPH氧化酶的正调控因子,通过增加ROS,主要是H2O2的含量来诱导氧化猝发反应,影响植物的防御体系。水稻中有7种ROP蛋白,拟南芥中有11种,玉米中有9[48]。水稻OsRac1通过调节NADPH氧化酶的活性来增加H2O2的积累,对稻瘟病的防御有积极的调节作[48],AtROP1可增加NADPH氧化酶活性来产生H2O2,提高马铃薯对致病疫霉的抗性。在拟南芥中,AtROP10AtROP11参与植物ABA信号转[49]。另外RopGAP4是ROP蛋白的负调控因子,可影响NADPH氧化酶活[50]

  • 3.3 MAPK级联反应参与植物体内ROS清除

    3.3

    促分裂原活化蛋白激酶(MAPK)是一组能被不同的细胞外刺激,如细胞因子、神经递质、激素、细胞应激及细胞黏附等激活的丝氨酸-苏氨酸蛋白激酶,又称蛋白磷酸化酶,其作用机制是将ATP上的磷酸基团转移到蛋白质氨基酸残基上,达到催化底物蛋白质磷酸化的目[51]。MAPK是信号从细胞表面传导到细胞核内部的重要传递[52]。MAPK级联有三个成员:MAPKK激酶(MAPKKK)、MAPK激酶(MAPKK)和MAPK[53]。在MAPK级联途径中,MAPKKK将MAPKK中的丝氨酸/苏氨酸-x3~5-丝氨酸/苏氨酸(x代表任意氨基酸,3~5代表氨基酸个数)基因序列通过磷酸化激活;MAPKK作为一种双特异性蛋白激酶,可将MAPK中的苏氨酸-x-酪氨酸基因序列的Thr和Tyr 2个残基磷酸化;位于级联反应最下游的MAPK经激活后进入细胞核,通过激活特定的转录因子引起功能基因表达或者激活其它相关酶类,最终会使植物细胞做出对生物和非生物胁迫应[54] 。MAPK活性增加的一个重要原因是ROS的二次产生或氧化还原反[55]。MAPK级联反应参与NADPH氧化酶的信号调节,植物氧化猝发受磷酸化和去磷酸化调节,关于MAPK参与植物一系列信号的传递过程有待进一步研[56]

    MAPK级联途径生理学功能主要有:参与植物的抗病反应,如参与抵制细胞程序性死亡、ROS猝发等机制;通过调控一系列抗性基因的表达,参与植物的非生物胁迫反应(如极端温度、干旱、盐害等[57];参与植物激素信号的转导(如乙烯、生长素等);参与植物细胞分裂、气孔生成、叶片衰老等生长发育过[58]

  • 3.4 热激蛋白参与植物体内ROS清除

    3.4

    HSP是生物体受到高温、缺氧、重金属等逆境时合成的一类应激蛋白,主要以分子伴侣形式参与保持蛋白稳态及修复变性蛋白,在植物生长发育及逆境调控过程中发挥重要作[59]。植物HSP包括:HSP100、HSP90、HSP70、HSP60、sHSP,主要分布在细胞间隙、细胞壁、细胞核、叶绿体和线粒体等亚细胞结构中,其中HSP100大多存在于细胞质、线粒体和叶绿体中;HSP90主要存在于高尔基体和液泡中;HSP70存在于细胞质和细胞骨架,合成后移动至细胞核及核仁;HSP60主要存在内质网中;sHSP热激后凝聚成胞质颗[60]

    HSP的生物学功能包括:(1)分子伴侣功能:参与肽链的折叠、组装、转运及终止;(2)胁迫应激功能:减轻植物在逆境中的伤害;(3)信号调节:参与信号转导过程中沉默变异基因的表达;(4)交叉保护:HSP可被多种逆境诱导产生的蛋白在功能上存在交叉或相互作[61]。其中HSP70可通过抑制端粒酶活化的信号转导来阻止细胞程序性死亡,HSP60具有抗凋亡的作用,可维持线粒体氧化磷酸化,防止细胞死[62]。HSP在逆境胁迫中的防御途径主要包括:(1)维持蛋白质结构功能稳定,清除异常蛋白;(2)通过增加脂膜有序性和膜流动性维持生物膜结构的稳定;(3)通过增强葡萄糖-6-磷酸脱氢酶的活性来提高GSH的还原水平清除过剩的ROS[63]

  • 3.5 凋亡蛋白与植物体内ROS清除的关系

    3.5

    BAX, BCL-2, Caspases等凋亡蛋白可控制和介导一系列程序和信号通路过程,要防止细胞凋亡,可通过阻断其信号通路来实现。BAX是与BCL-2同源的水溶性相关蛋白,BAX基因是BCL-2基因家族中细胞凋亡促进基因,BAX的过度表达可拮抗BCL-2的保护效应而使细胞趋于死亡。BCL-2和BAX蛋白的表达与凋亡调控直接相关:BAX表达量增加,促进细胞凋亡,BCL-2表达量增加,可抑制细胞凋[64]。BAX蛋白是线粒体脂膜上离子通道的组成成分,促进细胞色素C穿过线粒体膜,使Caspases -9,Caspases -3被激活,进一步激活细胞凋亡程[65]。BCL-2通过干扰细胞色素C的释放而阻断上游Caspases蛋白酶的激[66]

  • 4 展 望

    4

    根据植物氧化平衡的代谢机理,近年来人们研究出一系列提高植物抗逆能力的方法,例如:(1)适当环境刺激,如适当高温锻炼或者其他逆境胁迫,可增强植物ROS及各种抗氧化酶系的表达,使其对不良环境的耐受力也变[67];(2)添加外源抗氧化物质,如一定浓度的外源AsA处理植物可以降低其MDA和H2O2含量,提高其抗氧化酶系的活性,缓解DNA 损伤,及时清理体内的ROS[68];(3)将抗氧化能力作为植物抗逆能力的筛选指标,或者通过基因重组技术提高抗氧化酶系的活性,如高活性SOD、低MDA和高抗AsA含量的品系,其膜脂过氧化作用低、抗逆能力[69]。超表达SOD基因的水稻或拟南芥,其SOD、CAT、POD 含量均有所升高,ROS的清除能力明显增强,H2O2和MDA含量下降,对盐害、干旱及臭氧的耐受能力明显加[36]

    目前关于逆境胁迫对植物活性氧代谢研究较多,但其抗氧化胁迫的代谢机理研究有待更进一步的探索,对于一些生理机理的解释还存在不完善的地方。MAPK级联反应等与ROS的互动机制目前还远未了解清楚,ROP蛋白、HSP、BAX、BCL-2、Casspases蛋白基因表达的信号转导途径、转录后的调控机制以及翻译后的活性调节方式与ROS介导的具体生理过程的相关性在一定情况下是否存在差异,都有待进一步研究。因此,探明植物体的抗氧化生理代谢以及提高植物的抗逆能力方面的探索任重而道远。

  • 参考文献

    • 1

      Singh R, Singh S, Parihar P, et al. Reactive oxygen species (ROS): beneficial companions of plants developmental processes [J]. Front Plant Sci, 2016, 27(7): 1299.

    • 2

      Huang Y C, Qin Y X. Advances on reactive oxygen species in plants [J]. Chin Agric Bull, 2012, 28(36): 219-226.

      黄亚成, 秦云霞. 植物中活性氧的研究进展[J]. 中国农学通报, 2012, 28(36): 219-226.

    • 3

      Noctor G, Lelarge-Trouverie C, Mhamdi A. The metabolomics of oxidative stress [J]. Phytochemistry, 2015, 112(1): 33-53.

    • 4

      Foyer C H, Ruban A V, Noctor G. Viewing oxidative stress through the lens of oxidative signalling rather than damage [J]. Biochem J, 2017, 474(6): 877-883.

    • 5

      Foyer C H, Noctor G. Stress-triggered redox signalling: what's in pROSpect? [J]. Plant Cell Environ, 2016, 39(5): 951-964.

    • 6

      Camejo D, Guzmán-Cedeño Á, Moreno A. Reactive oxygen species, essential molecules, during plant-pathogen interactions [J]. Plant Physiol Biochem, 2016, 103: 10-23.

    • 7

      Sies H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress [J]. Redox Biol, 2017, 11: 613-619.

    • 8

      Suzuki N, Miller G, Morales J, et al. Respiratory burst oxidases: the engines of ROS signaling [J]. Curr Opin Plant Biol, 2011, 14(6): 691-699.

    • 9

      Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling [J]. J Exp Bot, 2014, 65(5): 1229-1240.

    • 10

      Mittler R, Vanderauwera S, Suzuki N, et al. ROS signaling: the new wave? [J]. Trends Plant Sci, 2011, 16(6): 300-309.

    • 11

      Farmer E E, Mueller M J. ROS- mediated lipid peroxidation and RES-activated signaling [J]. Annu Rev Plant Biol, 2013, 64: 429-450.

    • 12

      Fischer B B, Éva H, Kriegerliszkay A. Production, detection, and signaling of singlet oxygen in photosynthetic organisms [J]. Antioxid Redox Signal, 2013, 18(16): 2145-2162.

    • 13

      op den Camp R G, Przybyla D, Ochsenbein C, et al . Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis [J]. Plant Cell, 2003, 15(10): 2320-2332.

    • 14

      Huang S B, van Aken O, Schwarzländer M, et al. The roles of mitochondrial reactive oxygen species in cellular signaling and stress response in plants [J] Plant Physiol, 2016, 171(3): 1551-1559.

    • 15

      Ramel F, Birtic S, Ginies C, et al. Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants [J]. Proc Natl Acad Sci U S A, 2012, 109(14): 5535-5540.

    • 16

      O'Brien J A, Daudi A, Butt V S, et al. Reactive oxygen species and their role in plant defence and cell wall metabolism [J]. Planta, 2012, 236(3): 765-779.

    • 17

      Ogasawara Y, Kaya H, Hiraoka G, et al. Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation [J]. J Biol Chem, 2008, 283(14): 8885-8892.

    • 18

      Noctor G, Foyer C H. Intracellular redox compartmentation and ROS-related communication in regulation and signaling [J]. Plant Physiol, 2016, 171(3): 1581-1592.

    • 19

      Mhamdi A, Hager J, Chaouch S, et al. Arabidopsis GLUTATHIONE REDUCTASE1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways [J]. Plant Physiol, 2010, 153(3): 1144-1160.

    • 20

      Miller G, Suzuki N, Ciftci-Yilmaz S, et al. Reactive oxygen species homeostasis and signalling during drought and salinity stresses [J]. Plant Cell Environ, 2010, 33(4): 453-467.

    • 21

      Marino D, Dunand C, Puppo A, et al. A burst of plant NADPH oxidases [J]. Trends Plant Sci, 2012, 17(1): 9-15.

    • 22

      Queval G, Jaillard D, Zechmann B, et al. Increased intracellular H2O2 availability preferentially drives glutathione accumulation in vacuoles and chloroplasts [J]. Plant Cell Environ, 2011, 34(1): 21-32.

    • 23

      Noctor G, Foyer C H. Intracellular redox compartmentation and ROS-related communication in regulation and signaling [J]. Plant Physiol, 2016, 171(3): 1581-1592.

    • 24

      Kwak J M, Mori I C, Pei Z M, et al. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis [J]. EMBO J, 2003, 22(11): 2623-2633.

    • 25

      Gilroy S, Białasek M, Suzuki N, et al. ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants [J]. Plant Physiol, 2016, 171(3): 1606-1615.

    • 26

      Umezawa T, Nakashima K, Miyakawa T, et al. Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport [J]. Plant Cell Physiol, 2010, 51(11): 1821-1839.

    • 27

      Boudsocq M, Willmann M R, Mccormack M, et al. Differential innate immune signalling via Ca2+ sensor protein kinases [J]. Nature, 2010, 464(7287): 418-422.

    • 28

      Zhang W, Jeon B W, Assmann S M. Heterotrimeric G-protein regulation of ROS signalling and calcium currents in Arabidopsis guard cells [J]. J Exp Bot, 2011, 62(7): 2371-2379.

    • 29

      Zermiani M, Zonin E, Nonis A, et al. Ethylene negatively regulates transcript abundance of ROP-GAP rheostat-encoding genes and affects apoplastic reactive oxygen species homeostasis in epicarps of cold stored apple fruits [J]. J Exp Bot, 2015, 66(22): 7255-7270.

    • 30

      Weyemi U, Dupuy C. The emerging role of ROS-generating NADPH oxidase NOX4 in DNA-damage responses [J]. Mutat Res, 2012, 751(2): 77-81.

    • 31

      Kadota Y, Shirasu K, Zipfel C. Regulation of the NADPH oxidase RBOHD during plant immunity [J]. Plant Cell Physiol, 2015, 56(8): 1472-1480.

    • 32

      Ma L Y. Investigation on functions of NADPH oxidase AtrbohD in Arabidopsis thaliana under waterlogging stress [D]. Kaifeng: Henan University, 2011.

      马丽娅. 水淹胁迫下NADPH氧化酶AtrbohD的功能研究 [D]. 开封: 河南大学, 2011.

    • 33

      Dong L, He Y Z, Wang Y L, et al. Progress on application of superoxide dismutase (SOD) [J]. J Agric Sci Tech China, 2013, 15(5): 53-58.

      董亮, 何永志, 王远亮, 等. 超氧化物歧化酶(SOD)的应用研究进展 [J]. 中国农业科技导报, 2013, 15(5): 53-58.

    • 34

      Ma W R, Tong J M, Shan C H. The characteristics of superixide dismutase and its research in plant resistance [J]. Food Industry, 2013, 34(9): 154-158.

      马伟荣, 童军茂, 单春会. 超氧化物歧化酶(SOD)的特征及在植物抗逆性方面的研究进展 [J]. 食品工业, 2013, 34(9): 154-158.

    • 35

      Polle A. Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis [J]. Plant Physiol, 2001, 126(1): 445-462.

    • 36

      Alscher R G, Erturk N, Heath L S. Role of superoxide dismutases(SODs) in controlling oxidative stress in plants [J]. J Exp Bot, 2002, 53(372): 1331-1341.

    • 37

      Yang J D, Wei F J, Pan X X, et al. Research process of animal catalase (CAT) [J]. Heilongjiang Animal Science and Veterinary Medicine, 2016(7): 59-62.

      杨佳栋, 魏凤菊, 潘新新, 等. 动物过氧化氢酶(CAT)的研究进展 [J]. 黑龙江畜牧兽医, 2016(7): 59-62.

    • 38

      Chen J F, Wang G N, Cheng S M. Progress about Catalase Function in Plant Stress Reactions [J]. Acta Bot Boreali-Occident Sin, 2008, 28(1): 188-193.

      陈金峰, 王宫南, 程素满. 过氧化氢酶在植物胁迫响应中的功能研究进展 [J]. 西北植物学报, 2002, 28(1): 188-193.

    • 39

      Mhamdi A, Noctor G, Baker A. Plant catalases: peroxisomal redox guardians [J]. Arch Biochem Biophys, 2012, 525(2): 181-194.

    • 40

      Feki K, Kamoun Y, Ben Mahmoud R, et al. Multiple abiotic stress tolerance of the transformants yeast cells and the transgenic Arabidopsis plants expressing a novel durum wheat catalase [J]. Plant Physiol Biochem, 2015, 97: 420-431.

    • 41

      Chen H J, Wu S D, Huang G J, et al. Expression of a cloned sweet potato catalase SPCAT1 alleviates ethephon-mediated leaf senescence and H2O2 elevation [J]. J Plant Physiol, 2012, 169(1): 86-97.

    • 42

      Yang Y P, Wan L P, Kong W B. Research progress of barley peroxidase (POD) [J]. Beer Sci Technol, 2012(2): 6-8.

      杨燕萍, 完莉萍, 孔维宝. 大麦过氧化物酶(POD)的研究进展 [J]. 啤酒科技, 2012(2): 6-8.

    • 43

      Czégény G, Le Martret B, Pávkovics D, et al. Elevated ROS-scavenging enzymes contribute to acclimation to UV-B exposure in transplastomic tobacco plants, reducing the role of plastid peroxidases [J]. J Plant Physiol, 2016, 201: 95-100.

    • 44

      Pang C H, Feng L D, Wang B S. Characterization of the gene encoding APX isoenzymes and the response of APX to the stress in higher plants [J]. J Shandong Normal Univ, 2007, 22(4): 114-116.

      庞彩红, 冯兰东, 王宝山. 高等植物中编码APX的基因特点及其与逆境响应的关系 [J]. 山东师范大学学报, 2007, 22(4): 114-116.

    • 45

      Han Y, Chaouch S, Mhamdi A, et al. Functional analysis of Arabidopsis mutants points to novel roles for glutathione in coupling H2O2 to activation of salicylic acid accumulation and signaling [J]. Antioxid Redox Signal, 2013, 18(16): 2106-2121.

    • 46

      Han Y, Mhamdi A, Chaouch S, et al. Regulation of basal and oxidative stress-triggered jasmonic acid-related gene expression by glutathione [J]. Plant Cell Environ, 2013, 36(6): 1135-1146.

    • 47

      Ma Q H, Zhu H H, Han J Q. Wheat ROP proteins modulate defense response through lignin metabolism [J]. Plant Sci, 2017, 262: 32-38.

    • 48

      Fehér A, Lajkó D B. Signals fly when kinases meet Rho-of-plants(ROP) small G-proteins [J]. Plant Sci, 2015, 237: 93-107.

    • 49

      Miyawaki K N, Yang Z. Extracellular signals and receptor-like kinases regulating ROP GTPases in plants [J]. Front Plant Sci, 2014, 22(5): 449.

    • 50

      Baxter-Burrell A, Yang Z B, Springer P S, et al. RopGAP4-dependent rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance [J]. Science, 2002, 296(5575): 2026-2028.

    • 51

      Fan H Y, Tong C, Sun Q Y. Mitogen-activated protein kinase(MAPK) signaling pathways: state-of-the-art [J]. Chinese Journal of Zoology, 2002, 37(5): 98-102.

      范衡宇, 佟超, 孙青原. 丝裂原活化蛋白激酶(MAPK)信号通路的研究进展 [J]. 动物学杂志, 37(5): 98-102.

    • 52

      Zhang Z C, Liang Y, Li C. Review on plant MAPK cascades and their functions [J]. J Northwest Sci-Tech Univ, 2014, 42(4): 207-214.

      张振才, 梁燕, 李翠. 植物MAPK级联途径及其功能研究进展 [J]. 西北农林科技大学学报, 2014, 42(4): 207-214.

    • 53

      Guo F, Fu M G, Jiang Z S. Regulation role of peroxiredoxins involved into MAPK signalling pathways [J]. Chin J Arteriosclerosis, 2016, 24(11): 1163-1168.

      郭芳, 符民桂, 姜志胜. 过氧化物还原酶在MAPK信号通路中的调节作用 [J]. 中国动脉硬化杂志, 2016, 24(11): 1163-1168.

    • 54

      Pan J W, Li D Q. Cellular localization of components of mitogen-activated protein kinase(MAPK) cascades and alternative splicing [J]. Chin J Biochem Molecular Biology, 2010, 26(5): 393-400.

      潘教文, 李德全. 植物MAPK信号转导组分的细胞定位与选择性剪接 [J]. 中国生物化学与分子生物学报, 2010, 26(5): 393-400.

    • 55

      Zhang J, Shao F, Li Y, et al. A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants [J]. Cell Host Microbe, 2007, 1(3): 175-185.

    • 56

      Kawarazaki T, Kimura S, Iizuka A, et al. A low temperature-inducible protein AtSRC2 enhances the ROS-producing activity of NADPH oxidase AtRbohF [J]. Biochim Biophys Acta, 2013, 1833(12): 2775-2780.

    • 57

      Smékalová V, Doskočilová A, Komis G, et al. Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants [J]. Biotechnol Adv, 2014, 32(1): 2-11.

    • 58

      Zhang J Y, Guo Y, Si J P, et al. A polysaccharide of Dendrobium officinale ameliorates H2O2-induced apoptosis in H9c2 cardiomyocytes via PI3K/AKT and MAPK pathways [J]. Int J Biol Macromol, 2017, 104(Pt A): 1-10.

    • 59

      Baruah K, Norouzitallab P, Linayati L, et al. Reactive oxygen species generated by a heat shock protein(Hsp) inducing product contributes to Hsp70 production and Hsp70-mediated protective immunity in Artemia franciscana against pathogenic vibrios [J]. Dev Comp Immunol, 2014, 46(2): 470-479.

    • 60

      Chander K, Vaibhav K, Ejaz Ahmed M, et al. Quercetin mitigates lead acetate-induced behavioral and histological alterations via suppression of oxidative stress, Hsp-70, Bak and upregulation of Bcl-2 [J]. Food Chem Toxicol, 2014, 68: 297-306.

    • 61

      Qian J, Chen J, Liu Y F, et al. Overexpression of Arabidopsis HsfA1a enhances diverse stress tolerance by promoting stress-induced Hsp expression [J]. Genet Mol Res, 2014, 13(1): 1233-1243.

    • 62

      Liu Y F, Zhang C X, Chen J, et al. Arabidopsis heat shock factor HsfA1a directly senses heat stress, pH changes, and hydrogen peroxide via the engagement of redox state [J]. Plant Physiol Biochem, 2013, 64: 92-98.

    • 63

      Ahn S G, Thiele D J. Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress [J]. Genes Dev, 2003, 17(4): 516-528.

    • 64

      Yuan Z G, Jiang H, Zhu X H, et al. Ginsenoside Rg3 promotes cytotoxicity of Paclitaxel through inhibiting NF-κB signaling and regulating Bax/Bcl-2 expression on triple-negative breast cancer [J]. Biomed Pharmacother, 2017, 89: 227-232.

    • 65

      Ishikawa T, Uchimiya H, Kawai-Yamada M. The role of plant Bax inhibitor-1 in suppressing H2O2-induced cell death [J]. Meth Enzymol, 2013, 527: 239-256.

    • 66

      Qin W W, Ren B, Wang S S, et al. Apigenin and naringenin ameliorate PKCβII-associated endothelial dysfunction via, regulating ROS/caspase-3 and NO pathway in endothelial cells exposed to high glucose [J]. Vascul Pharmacol, 2016, 85: 39-49.

    • 67

      Imtiaz M, Ashraf M, Rizwan M S, et al. Vanadium toxicity in chickpea (Cicer arietinum L.) grown in red soil: effects on cell death, ROS and antioxidative systems [J]. Ecotoxicol Environ Saf, 2018, 158: 139-144.

    • 68

      Qi J S, Song C P, Wang B S, et al. Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack [J]. J Integr Plant Biol, 2018, 60(9): 805-826.

    • 69

      Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling [J]. J Exp Bot, 2014, 65(5): 1229-1240. □

高媛

机 构:三峡大学生物与制药学院,湖北 宜昌,443002

Affiliation:College of Life Science and Pharmacy, Three Gorges University, Yichang 443002, Hubei, China

邮 箱:gaoyuan6185@sina.com.

作者简介:高媛(1992-),女,硕士生,主要研究微生物与植物互作。E-mail:gaoyuan6185@sina.com.

薛艳红

机 构:三峡大学生物与制药学院,湖北 宜昌,443002

Affiliation:College of Life Science and Pharmacy, Three Gorges University, Yichang 443002, Hubei, China

刘士平

机 构:三峡大学生物与制药学院,湖北 宜昌,443002

Affiliation:College of Life Science and Pharmacy, Three Gorges University, Yichang 443002, Hubei, China

角 色:通讯作者

Role:Corresponding author

邮 箱:liuspain@ctgu.edu.cn.

作者简介:E-mail: 通信作者:刘士平(1974-),男,教授,研究方向为微生物与植物互作。E-mail:liuspain@ctgu.edu.cn.

html/swzy/201901003/alternativeImage/b4a26434-fa11-43e0-857d-19bc8837cce2-F001.jpg
html/swzy/201901003/alternativeImage/b4a26434-fa11-43e0-857d-19bc8837cce2-F002.jpg

图2 Rboh结构

Fig.2 The structure of Rboh

图1 高等植物质膜中的ROS

Fig.1 The concept of reactive oxygen species (ROS) in the plasma membrane of higher plants

image /

无注解

无注解

  • 参考文献

    • 1

      Singh R, Singh S, Parihar P, et al. Reactive oxygen species (ROS): beneficial companions of plants developmental processes [J]. Front Plant Sci, 2016, 27(7): 1299.

    • 2

      Huang Y C, Qin Y X. Advances on reactive oxygen species in plants [J]. Chin Agric Bull, 2012, 28(36): 219-226.

      黄亚成, 秦云霞. 植物中活性氧的研究进展[J]. 中国农学通报, 2012, 28(36): 219-226.

    • 3

      Noctor G, Lelarge-Trouverie C, Mhamdi A. The metabolomics of oxidative stress [J]. Phytochemistry, 2015, 112(1): 33-53.

    • 4

      Foyer C H, Ruban A V, Noctor G. Viewing oxidative stress through the lens of oxidative signalling rather than damage [J]. Biochem J, 2017, 474(6): 877-883.

    • 5

      Foyer C H, Noctor G. Stress-triggered redox signalling: what's in pROSpect? [J]. Plant Cell Environ, 2016, 39(5): 951-964.

    • 6

      Camejo D, Guzmán-Cedeño Á, Moreno A. Reactive oxygen species, essential molecules, during plant-pathogen interactions [J]. Plant Physiol Biochem, 2016, 103: 10-23.

    • 7

      Sies H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress [J]. Redox Biol, 2017, 11: 613-619.

    • 8

      Suzuki N, Miller G, Morales J, et al. Respiratory burst oxidases: the engines of ROS signaling [J]. Curr Opin Plant Biol, 2011, 14(6): 691-699.

    • 9

      Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling [J]. J Exp Bot, 2014, 65(5): 1229-1240.

    • 10

      Mittler R, Vanderauwera S, Suzuki N, et al. ROS signaling: the new wave? [J]. Trends Plant Sci, 2011, 16(6): 300-309.

    • 11

      Farmer E E, Mueller M J. ROS- mediated lipid peroxidation and RES-activated signaling [J]. Annu Rev Plant Biol, 2013, 64: 429-450.

    • 12

      Fischer B B, Éva H, Kriegerliszkay A. Production, detection, and signaling of singlet oxygen in photosynthetic organisms [J]. Antioxid Redox Signal, 2013, 18(16): 2145-2162.

    • 13

      op den Camp R G, Przybyla D, Ochsenbein C, et al . Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis [J]. Plant Cell, 2003, 15(10): 2320-2332.

    • 14

      Huang S B, van Aken O, Schwarzländer M, et al. The roles of mitochondrial reactive oxygen species in cellular signaling and stress response in plants [J] Plant Physiol, 2016, 171(3): 1551-1559.

    • 15

      Ramel F, Birtic S, Ginies C, et al. Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants [J]. Proc Natl Acad Sci U S A, 2012, 109(14): 5535-5540.

    • 16

      O'Brien J A, Daudi A, Butt V S, et al. Reactive oxygen species and their role in plant defence and cell wall metabolism [J]. Planta, 2012, 236(3): 765-779.

    • 17

      Ogasawara Y, Kaya H, Hiraoka G, et al. Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation [J]. J Biol Chem, 2008, 283(14): 8885-8892.

    • 18

      Noctor G, Foyer C H. Intracellular redox compartmentation and ROS-related communication in regulation and signaling [J]. Plant Physiol, 2016, 171(3): 1581-1592.

    • 19

      Mhamdi A, Hager J, Chaouch S, et al. Arabidopsis GLUTATHIONE REDUCTASE1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways [J]. Plant Physiol, 2010, 153(3): 1144-1160.

    • 20

      Miller G, Suzuki N, Ciftci-Yilmaz S, et al. Reactive oxygen species homeostasis and signalling during drought and salinity stresses [J]. Plant Cell Environ, 2010, 33(4): 453-467.

    • 21

      Marino D, Dunand C, Puppo A, et al. A burst of plant NADPH oxidases [J]. Trends Plant Sci, 2012, 17(1): 9-15.

    • 22

      Queval G, Jaillard D, Zechmann B, et al. Increased intracellular H2O2 availability preferentially drives glutathione accumulation in vacuoles and chloroplasts [J]. Plant Cell Environ, 2011, 34(1): 21-32.

    • 23

      Noctor G, Foyer C H. Intracellular redox compartmentation and ROS-related communication in regulation and signaling [J]. Plant Physiol, 2016, 171(3): 1581-1592.

    • 24

      Kwak J M, Mori I C, Pei Z M, et al. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis [J]. EMBO J, 2003, 22(11): 2623-2633.

    • 25

      Gilroy S, Białasek M, Suzuki N, et al. ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants [J]. Plant Physiol, 2016, 171(3): 1606-1615.

    • 26

      Umezawa T, Nakashima K, Miyakawa T, et al. Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport [J]. Plant Cell Physiol, 2010, 51(11): 1821-1839.

    • 27

      Boudsocq M, Willmann M R, Mccormack M, et al. Differential innate immune signalling via Ca2+ sensor protein kinases [J]. Nature, 2010, 464(7287): 418-422.

    • 28

      Zhang W, Jeon B W, Assmann S M. Heterotrimeric G-protein regulation of ROS signalling and calcium currents in Arabidopsis guard cells [J]. J Exp Bot, 2011, 62(7): 2371-2379.

    • 29

      Zermiani M, Zonin E, Nonis A, et al. Ethylene negatively regulates transcript abundance of ROP-GAP rheostat-encoding genes and affects apoplastic reactive oxygen species homeostasis in epicarps of cold stored apple fruits [J]. J Exp Bot, 2015, 66(22): 7255-7270.

    • 30

      Weyemi U, Dupuy C. The emerging role of ROS-generating NADPH oxidase NOX4 in DNA-damage responses [J]. Mutat Res, 2012, 751(2): 77-81.

    • 31

      Kadota Y, Shirasu K, Zipfel C. Regulation of the NADPH oxidase RBOHD during plant immunity [J]. Plant Cell Physiol, 2015, 56(8): 1472-1480.

    • 32

      Ma L Y. Investigation on functions of NADPH oxidase AtrbohD in Arabidopsis thaliana under waterlogging stress [D]. Kaifeng: Henan University, 2011.

      马丽娅. 水淹胁迫下NADPH氧化酶AtrbohD的功能研究 [D]. 开封: 河南大学, 2011.

    • 33

      Dong L, He Y Z, Wang Y L, et al. Progress on application of superoxide dismutase (SOD) [J]. J Agric Sci Tech China, 2013, 15(5): 53-58.

      董亮, 何永志, 王远亮, 等. 超氧化物歧化酶(SOD)的应用研究进展 [J]. 中国农业科技导报, 2013, 15(5): 53-58.

    • 34

      Ma W R, Tong J M, Shan C H. The characteristics of superixide dismutase and its research in plant resistance [J]. Food Industry, 2013, 34(9): 154-158.

      马伟荣, 童军茂, 单春会. 超氧化物歧化酶(SOD)的特征及在植物抗逆性方面的研究进展 [J]. 食品工业, 2013, 34(9): 154-158.

    • 35

      Polle A. Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis [J]. Plant Physiol, 2001, 126(1): 445-462.

    • 36

      Alscher R G, Erturk N, Heath L S. Role of superoxide dismutases(SODs) in controlling oxidative stress in plants [J]. J Exp Bot, 2002, 53(372): 1331-1341.

    • 37

      Yang J D, Wei F J, Pan X X, et al. Research process of animal catalase (CAT) [J]. Heilongjiang Animal Science and Veterinary Medicine, 2016(7): 59-62.

      杨佳栋, 魏凤菊, 潘新新, 等. 动物过氧化氢酶(CAT)的研究进展 [J]. 黑龙江畜牧兽医, 2016(7): 59-62.

    • 38

      Chen J F, Wang G N, Cheng S M. Progress about Catalase Function in Plant Stress Reactions [J]. Acta Bot Boreali-Occident Sin, 2008, 28(1): 188-193.

      陈金峰, 王宫南, 程素满. 过氧化氢酶在植物胁迫响应中的功能研究进展 [J]. 西北植物学报, 2002, 28(1): 188-193.

    • 39

      Mhamdi A, Noctor G, Baker A. Plant catalases: peroxisomal redox guardians [J]. Arch Biochem Biophys, 2012, 525(2): 181-194.

    • 40

      Feki K, Kamoun Y, Ben Mahmoud R, et al. Multiple abiotic stress tolerance of the transformants yeast cells and the transgenic Arabidopsis plants expressing a novel durum wheat catalase [J]. Plant Physiol Biochem, 2015, 97: 420-431.

    • 41

      Chen H J, Wu S D, Huang G J, et al. Expression of a cloned sweet potato catalase SPCAT1 alleviates ethephon-mediated leaf senescence and H2O2 elevation [J]. J Plant Physiol, 2012, 169(1): 86-97.

    • 42

      Yang Y P, Wan L P, Kong W B. Research progress of barley peroxidase (POD) [J]. Beer Sci Technol, 2012(2): 6-8.

      杨燕萍, 完莉萍, 孔维宝. 大麦过氧化物酶(POD)的研究进展 [J]. 啤酒科技, 2012(2): 6-8.

    • 43

      Czégény G, Le Martret B, Pávkovics D, et al. Elevated ROS-scavenging enzymes contribute to acclimation to UV-B exposure in transplastomic tobacco plants, reducing the role of plastid peroxidases [J]. J Plant Physiol, 2016, 201: 95-100.

    • 44

      Pang C H, Feng L D, Wang B S. Characterization of the gene encoding APX isoenzymes and the response of APX to the stress in higher plants [J]. J Shandong Normal Univ, 2007, 22(4): 114-116.

      庞彩红, 冯兰东, 王宝山. 高等植物中编码APX的基因特点及其与逆境响应的关系 [J]. 山东师范大学学报, 2007, 22(4): 114-116.

    • 45

      Han Y, Chaouch S, Mhamdi A, et al. Functional analysis of Arabidopsis mutants points to novel roles for glutathione in coupling H2O2 to activation of salicylic acid accumulation and signaling [J]. Antioxid Redox Signal, 2013, 18(16): 2106-2121.

    • 46

      Han Y, Mhamdi A, Chaouch S, et al. Regulation of basal and oxidative stress-triggered jasmonic acid-related gene expression by glutathione [J]. Plant Cell Environ, 2013, 36(6): 1135-1146.

    • 47

      Ma Q H, Zhu H H, Han J Q. Wheat ROP proteins modulate defense response through lignin metabolism [J]. Plant Sci, 2017, 262: 32-38.

    • 48

      Fehér A, Lajkó D B. Signals fly when kinases meet Rho-of-plants(ROP) small G-proteins [J]. Plant Sci, 2015, 237: 93-107.

    • 49

      Miyawaki K N, Yang Z. Extracellular signals and receptor-like kinases regulating ROP GTPases in plants [J]. Front Plant Sci, 2014, 22(5): 449.

    • 50

      Baxter-Burrell A, Yang Z B, Springer P S, et al. RopGAP4-dependent rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance [J]. Science, 2002, 296(5575): 2026-2028.

    • 51

      Fan H Y, Tong C, Sun Q Y. Mitogen-activated protein kinase(MAPK) signaling pathways: state-of-the-art [J]. Chinese Journal of Zoology, 2002, 37(5): 98-102.

      范衡宇, 佟超, 孙青原. 丝裂原活化蛋白激酶(MAPK)信号通路的研究进展 [J]. 动物学杂志, 37(5): 98-102.

    • 52

      Zhang Z C, Liang Y, Li C. Review on plant MAPK cascades and their functions [J]. J Northwest Sci-Tech Univ, 2014, 42(4): 207-214.

      张振才, 梁燕, 李翠. 植物MAPK级联途径及其功能研究进展 [J]. 西北农林科技大学学报, 2014, 42(4): 207-214.

    • 53

      Guo F, Fu M G, Jiang Z S. Regulation role of peroxiredoxins involved into MAPK signalling pathways [J]. Chin J Arteriosclerosis, 2016, 24(11): 1163-1168.

      郭芳, 符民桂, 姜志胜. 过氧化物还原酶在MAPK信号通路中的调节作用 [J]. 中国动脉硬化杂志, 2016, 24(11): 1163-1168.

    • 54

      Pan J W, Li D Q. Cellular localization of components of mitogen-activated protein kinase(MAPK) cascades and alternative splicing [J]. Chin J Biochem Molecular Biology, 2010, 26(5): 393-400.

      潘教文, 李德全. 植物MAPK信号转导组分的细胞定位与选择性剪接 [J]. 中国生物化学与分子生物学报, 2010, 26(5): 393-400.

    • 55

      Zhang J, Shao F, Li Y, et al. A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants [J]. Cell Host Microbe, 2007, 1(3): 175-185.

    • 56

      Kawarazaki T, Kimura S, Iizuka A, et al. A low temperature-inducible protein AtSRC2 enhances the ROS-producing activity of NADPH oxidase AtRbohF [J]. Biochim Biophys Acta, 2013, 1833(12): 2775-2780.

    • 57

      Smékalová V, Doskočilová A, Komis G, et al. Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants [J]. Biotechnol Adv, 2014, 32(1): 2-11.

    • 58

      Zhang J Y, Guo Y, Si J P, et al. A polysaccharide of Dendrobium officinale ameliorates H2O2-induced apoptosis in H9c2 cardiomyocytes via PI3K/AKT and MAPK pathways [J]. Int J Biol Macromol, 2017, 104(Pt A): 1-10.

    • 59

      Baruah K, Norouzitallab P, Linayati L, et al. Reactive oxygen species generated by a heat shock protein(Hsp) inducing product contributes to Hsp70 production and Hsp70-mediated protective immunity in Artemia franciscana against pathogenic vibrios [J]. Dev Comp Immunol, 2014, 46(2): 470-479.

    • 60

      Chander K, Vaibhav K, Ejaz Ahmed M, et al. Quercetin mitigates lead acetate-induced behavioral and histological alterations via suppression of oxidative stress, Hsp-70, Bak and upregulation of Bcl-2 [J]. Food Chem Toxicol, 2014, 68: 297-306.

    • 61

      Qian J, Chen J, Liu Y F, et al. Overexpression of Arabidopsis HsfA1a enhances diverse stress tolerance by promoting stress-induced Hsp expression [J]. Genet Mol Res, 2014, 13(1): 1233-1243.

    • 62

      Liu Y F, Zhang C X, Chen J, et al. Arabidopsis heat shock factor HsfA1a directly senses heat stress, pH changes, and hydrogen peroxide via the engagement of redox state [J]. Plant Physiol Biochem, 2013, 64: 92-98.

    • 63

      Ahn S G, Thiele D J. Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress [J]. Genes Dev, 2003, 17(4): 516-528.

    • 64

      Yuan Z G, Jiang H, Zhu X H, et al. Ginsenoside Rg3 promotes cytotoxicity of Paclitaxel through inhibiting NF-κB signaling and regulating Bax/Bcl-2 expression on triple-negative breast cancer [J]. Biomed Pharmacother, 2017, 89: 227-232.

    • 65

      Ishikawa T, Uchimiya H, Kawai-Yamada M. The role of plant Bax inhibitor-1 in suppressing H2O2-induced cell death [J]. Meth Enzymol, 2013, 527: 239-256.

    • 66

      Qin W W, Ren B, Wang S S, et al. Apigenin and naringenin ameliorate PKCβII-associated endothelial dysfunction via, regulating ROS/caspase-3 and NO pathway in endothelial cells exposed to high glucose [J]. Vascul Pharmacol, 2016, 85: 39-49.

    • 67

      Imtiaz M, Ashraf M, Rizwan M S, et al. Vanadium toxicity in chickpea (Cicer arietinum L.) grown in red soil: effects on cell death, ROS and antioxidative systems [J]. Ecotoxicol Environ Saf, 2018, 158: 139-144.

    • 68

      Qi J S, Song C P, Wang B S, et al. Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack [J]. J Integr Plant Biol, 2018, 60(9): 805-826.

    • 69

      Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling [J]. J Exp Bot, 2014, 65(5): 1229-1240. □